Roots of Trinomials from the Viewpoint of Amoeba Theory

The behavior of the modulis of roots of univariate trinomials $Z^{s+t}+p Z^{t}+q \in \mathbb{C}[Z]$ for fixed support $A:=\{s+t, t, 0\} \subset \mathbb{N}$ with respect to the choice of coefficients $p, q \in \mathbb{C}$ is a classical 19th century problem. Although algebraically described by P. Bohl in 1908, the geometry and topology of the corresponding configuration space \mathbb{C}^{A} is unknown. We provide such a description yielded by a reinterpretation of this problem in terms of amoeba theory.

Given an Laurent polynomial $f \in \mathbb{C}\left[\mathbf{Z}^{ \pm 1}\right]=\mathbb{C}\left[Z_{1}^{ \pm 1}, \ldots, Z_{n}^{ \pm 1}\right]$ the amoeba $\mathcal{A}(f)$ (introduced by Gel'fand, Kapranov, and Zelevinsky '94) is the image of its variety $\mathcal{V}(f)$ under the Log-map

$$
\log :\left(\mathbb{C}^{*}\right)^{n} \rightarrow \mathbb{R}^{n},\left(\left|z_{1}\right| \cdot e^{i \cdot \phi_{1}}, \ldots,\left|z_{n}\right| \cdot e^{i \cdot \phi_{n}}\right) \mapsto\left(\log \left|z_{1}\right|, \ldots, \log \left|z_{n}\right|\right)
$$

where $\mathcal{V}(f)$ is considered as a subset of the algebraic torus $\left(\mathbb{C}^{*}\right)^{n}=(\mathbb{C} \backslash\{0\})^{n}$.
Amoebas provide a natural approach to tropical geometry and occur in numerous other fields of mathematics - e.g. complex analysis and the topology of real algebraic curves.

