Séminaire de Géométrie Tropicale

Institut Mathématiques de Jussieu ,
Université Pierre et Marie Curie, Paris 6
UMR CNRS 7586




03 octobre 2012, 16h15 salle 1525-502



Eugenii Shustin (Tel Aviv)

Résumé : Singular tropical surfaces
We completely classify pairs of singular tropical surfaces in R^3 of maximal-dimensional type, show that they can generically have only finitely many singular points, and describe all possible locations of singular points. More precisely, we show that singular points must be either vertices, or generalized midpoints and barycenters of certain faces of singular tropical surfaces, and, in some case, there may be additional metric restrictions to faces of singular tropical surfaces.
Joint work with H. and T. Markwig.