Séminaire de Géométrie Tropicale
09 octobre 2012, 15h30 salle 1516-417
Enumerative invariants of real nodal del Pezzo pairs
Résumé :
A real nodal del Pezzo pair (X,E) consists of a real nodal
del Pezzo surface X and a smooth rational real (-2)-curve E. Assume
that real part RE divides the corresponding connected component of RX.
In this situation we define relative enumerative invariants
W_{\pm}(X,E,D,f) which count signs of real rational curves in a real
linear system |D| quadratically tangent to E and passing through a
suitable number of real points of X. We discuss their properties and
relation to Welschinger invariants.
(Joint work with I. Itenberg and V. Kharlamov.)