Séminaire de Géométrie Tropicale

Institut Mathématiques de Jussieu ,
Université Pierre et Marie Curie, Paris 6
UMR CNRS 7586




09 octobre 2012, 15h30 salle 1516-417



Eugenii Shustin (Tel Aviv)

Enumerative invariants of real nodal del Pezzo pairs

Résumé :
A real nodal del Pezzo pair (X,E) consists of a real nodal del Pezzo surface X and a smooth rational real (-2)-curve E. Assume that real part RE divides the corresponding connected component of RX. In this situation we define relative enumerative invariants W_{\pm}(X,E,D,f) which count signs of real rational curves in a real linear system |D| quadratically tangent to E and passing through a suitable number of real points of X. We discuss their properties and relation to Welschinger invariants.
(Joint work with I. Itenberg and V. Kharlamov.)