
Some aspects of tropical geometry
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The goal of this text is to provide a quick overview of trop-
ical geometry: what it is about and why it is useful, through
some examples. After having defined basic objects in tropi-
cal geometry in Sections 1 and 2, we explain their relations
to classical geometry via the notion of amoebas of algebraic
curves in Section 3 and give some applications of tropical ge-
ometry to real and enumerative geometry in Section 4. We
end this text with some further remarks in Section 5.

Only a few bibliographical references are given along
the text and we tried each time to refer to the most ele-
mentary texts. For the interested reader who would like to
deepen parts of this note, we refer for example to the general
texts [Bru09], [RGST05], [BPS08], [IM], [Vir08], [Gat06],
[IMS07], [Mik06] and references therein.

1 Tropical algebra

The first point of view on tropical geometry given here will
be algebraic geometry built upon the tropical semi-field.

Tropical semi-field
The set of tropical numbers is defined by T = R∪{−∞}, which
we equip with the following tropical addition and multiplica-
tion (written within quotation marks):

“x + y” = max(x, y) “x × y” = x + y.

For example, we have the following identities:

“1 + 1” = 1, “1 + 2” = 2, “1 × 2” = 3,

“1 × (−2)” = −1, “(5 + 3)2” = 10.

It follows immediately from the definition that tropical addi-
tion is idempotent, i.e. “x + x” = x for any tropical number
x. As a consequence, a tropical number x does not have an
inverse for tropical addition except if x = −∞ (the neutral el-
ement for “ + ”). However, this lack of additive inverse is the
only axiom of a field which is not fulfilled by (T, “+ ”, “× ”).
This is precisely the definition of a semi-field. Note that any
x , −∞ has an inverse for tropical multiplication and that
“x−1” = −x.

Tropical polynomials
As soon as addition and multiplication are defined, polynomi-
als show up. By definition, a tropical polynomial function is
of the form

P(x) = “
d
∑

i=0

aix
i” = max

i
(ai + ix), where a0, . . . , ad, x ∈ T.

What is a tropical root of a tropical polynomial? Here we face
a recurring problem in tropical mathematics: several equiva-
lent definitions in classical mathematics may produce differ-
ent tropical objects.

If we look at tropical numbers x0 such that P(x0) = −∞,
the answer doesn’t bring so much information about P: since
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Figure 1. Graph of tropical polynomials

P(x) ≥ a0 for any x ∈ T, there does not exist such a x0 except
in the case where a0 = −∞ and x0 = −∞ . . .

To bring out a meaningful notion of a tropical root, let
us look instead at the graph of a tropical polynomial func-
tion (see Figure 1). A tropical polynomial P(x) is a piecewise
affine function and its graph has some corner points that will
be our tropical roots. They are exactly the tropical numbers
where P(x) is not locally given by a monomial.

More precisely, we say that x0 ∈ T is a tropical root of
order k of P(x) = “

∑d
i=0 aix

i” if there exist two indices i and
j such that in a neighbourhood of x0 in T we have P(x) =
“aix

i + a jx
j” and k = |i − j| is minimal. The next proposition

shows that this notion of tropical root is equivalent to a more
classical definition.

Proposition 1.1. The tropical semi-field T is algebraically

closed. Moreover, x0 is a tropical root of order k of a tropical

polynomial P(x) if and only if there exists a tropical polyno-

mial Q(x) which does not have x0 as a tropical root and such

that

P(x) = “(x + x0)kQ(x)” ∀x ∈ T.

For example we have the following factorisations (see
Figure 1):

“0+x+(−1)x2” = “(−1)(x+0)(x+1)” and “0+x2” = “(x+0)2”.

2 Tropical curves

Definition
Let us now turn to tropical polynomials in two variables and
the tropical curves they define. Since it makes all definitions
simpler, we restrict ourselves to tropical curves in R2 instead
of T2.
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Figure 2. A tropical line and two tropical conics
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Figure 3. Tropical cubics and sextic

Similarly to the case of univariate polynomials, let us
define the corner set V(P) ⊂ R2 of a tropical polynomial
P(x, y) = “

∑

ai, jx
iy j” as the set where P(x, y) is not locally

given by a monomial. That is to say

V(P) =
{

(x0, y0) ∈ R2 | ∃(i, j) , (k, l),

P(x0, y0) = “ai, jx
i
0y

j

0” = “ak,lx
k
0yl

0”
}

.

Since P(x, y) is a piecewise affine function, the set V(P) is a
piecewise linear graph in R2 (from now on the word “graph”
has to be understood in its graph theoretical sense). Any edge
e of V(P) is adjacent to exactly two connected components
E1 and E2 of R2 \ V(P). Let us say that the value of P(x, y) is
given by the monomial “ai, jx

iy j” on E1 and by “ak,lx
kyl” on

E2. We define the weight of e as

w(e) = gcd(|i − k|, | j − l|).

The weight of an edge might be seen as the 2-dimensional
analogue of the order of a tropical root. The tropical curve C

defined by P(x, y) is the set V(P) enhanced with this weight
function on its edges. In the examples of tropical curves de-
picted in Figures 2 and 3, we specify the weight of an edge
only when it is at least 2.

Balancing condition
There exists an equivalent definition of a plane tropical curve
that one can formulate into combinatorial terms. Let Γ be a
piecewise linear graph in R2 equipped with a weight function
w : Edge(Γ) → Z>0 and whose edges admit an integral di-
rection. Given an edge e of Γ adjacent to a vertex v, we may
choose ~uv,e the smallest (i.e. primitive) direction in Z2 of e

pointing away from v. The graph Γ is called balanced if it
satisfies the following balancing condition at any vertex v:

∑

e adjacent to v

w(e)~uv,e = 0.

Proposition 2.1 (Mikhalkin). Tropical curves in R2 corre-

spond exactly to balanced graphs in R2.

For example, the three primitive integral directions in the
case of the vertex of a tropical line are (−1, 0), (0,−1) and
(1, 1), whose sum is indeed 0.

Bézout’s Theorem
Tropical curves share many properties with plane complex al-
gebraic curves, i.e. subsets of C2 with equation P(z,w) = 0
where P(z,w) is a polynomial with complex coefficients. For
example, both classes of objects satisfy Bézout’s Theorem,
the genus formula, etc. Here we focus on the former.

Classically, Bézout’s Theorem states that two plane com-
plex algebraic curves of degree d and d′ in general position
have exactly dd′ intersection points.

To prove an analogous statement for tropical curves, we
first have to introduce the multiplicity of a tropical intersection
point. Let C and C′ be two tropical curves such that the set
C ∩C′ does not contain any vertex of C or C′. Hence, a point
p ∈ C ∩C′ lies on an edge e of C of weight w and on an edge
e′ of C′ of weight w′ (see Figure 4a). Let ~ue be a primitive
integral direction of e and ~ue′ be a primitive integral direction
of e′. The multiplicity m(p) of p is defined as the Euclidean
area of the parallelogram spanned by the two vectors w~ue and
w′~ue′ , i.e.

m(p) = ww′| det(~ue, ~ue′)|.

The following tropical version of Bézout’s Theorem has a
very elementary proof which requires only very basic mathe-
matical knowledge.

Proposition 2.2 (Sturmfels). If C and C′ are two tropical

curves of degree d and d′ in general position then
∑

p∈C∩C′

m(p) = dd′.

For example, the tropical line and conic in Figure 4b have
two intersection points, both of multiplicity 1, whereas the
ones in Figure 4c have only one intersection point, of multi-
plicity 2.
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Figure 4. Tropical intersection



3 Link to classical geometry

The similarity between tropical and complex curves men-
tioned in the previous section is much more than an amusing
coincidence. Tropical geometry has very deep connections
and relations with classical algebraic geometry.

Maslov dequantization
Let us start by relating the tropical semi-field with a classical
semi-field that we all know quite well: (R≥0,+,×). This pro-
cess, studied by Maslov and his collaborators since the 90s, is
known as the Maslov dequantization of real numbers.

Given a positive real number t, the bijection

logt =
log
log t

: R≥0 → T = [−∞;+∞)

induces a semi-field structure on T, where the two operations
denoted by “ +t ” and “ ×t ” are given by

“x +t y” = logt(t
x + ty) and “x ×t y” = logt(t

xty) = x + y.

We already have the appearance of classical addition as mul-
tiplication “ ×t ” on T. By construction, all the semi-fields
(T, “ +t ”, “ ×t ”) are isomorphic to (R+,+,×). Moreover, we
have the following simple inequalities:

∀t > 0, max(x, y) ≤ “x +t y” ≤ max(x, y) + logt 2.

In particular, when t tends to infinity, the law “+t ” converges
to tropical addition! Hence, the tropical semi-field arises nat-
urally as a degeneration of the classical semi-field (R+,+,×).
From an alternative perspective, one can see the classical
semi-field (R+,+,×) as a deformation of the tropical semi-
field, which justifies the “dequantization” terminology.

Amoebas
This dequantization process also applies to plane complex
curves. For this, we need the following map

Logt : (C∗)2 −→ R
2

(z,w) 7−→ (logt |z|, logt |w|).

Given an algebraic curve in (C∗)2, its image under the map
Logt is called its amoeba (in base t). Let us look more closely
at these amoebas with the help of a concrete example, namely
the line L with equation z + w + 1 = 0 in (C∗)2. One can
compute by hand that the amoeba of L is as depicted in Figure
5a. In particular, we see that it has three asymptotic directions:
(−1, 0), (0,−1), and (1, 1).

By the definition of logt, the amoeba of L in base t is
a contraction by a factor log t of the amoeba of L in base e

(see Figures 5b and 5c). Hence when t goes to +∞, the whole
amoeba is contracted to the origin and only the three asymp-
totic directions remain. In other words, what we see at the
limit in Figure 5d is a tropical line!

Of course, the same strategy applied to any classical curve
will produce a similar picture at the limit: the origin from
which the asymptotic directions of the amoeba emerge. To
get a more interesting limit, one should look not at amoebas
in base t of a single complex curve but at the family of amoe-
bas (Logt(Ct))t>0, where (Ct)t>0 is now a family of complex
curves. If we do so then the limit becomes much richer. For
example, we depict in Figure 6 the shape of the amoeba of the
curve with equation 1− z−w+ t2z2 − tzw+ t2y2 = 0 for t large
enough and its limit, which is . . . a tropical conic.

(a) Log(L) (b) Logt1
(L)

(c) Logt2
(L) (d) limt→∞ Logt(L)

Figure 5. Dequantization of a line (e < t1 < t2)

Logt(Ct) limt→∞ Logt(Ct)

Figure 6. Ct : 1 − z − w + t2z2 − tzw + t2y2 = 0

Theorem 3.1 (Mikhalkin, Rullgård). Let Pt(z,w) =
∑

i, j αi, j(t)
ziw j be a polynomial whose coefficients are functions αi, j :
R → C and suppose that αi, j(t) ∼ γi, jt

ai, j when t goes to

+∞ with γi, j ∈ C
∗. If Ct denotes the curve in (C∗)2 defined

by the polynomial Pt(z,w) then the amoeba Logt(Ct) con-

verges to the tropical curve defined by the tropical polynomial

Ptrop(x, y) = “
∑

i, j ai, jx
iy j”.

It remains for us to explain the relation between amoebas
and weights of a tropical curve. Let Pt(z,w) and P′t(z,w) be
two families of complex polynomials, defining two families
of complex algebraic curves (Ct)t>0 and (C′t)t>0 respectively.
As in Theorem 3.1, these two families of polynomials induce
two tropical polynomials Ptrop(x, y) and P′trop(x, y), which in
turn define two tropical curves C and C′.

Proposition 3.2 (Mikhalkin). Let p ∈ C∩C′ which is a vertex

of neither C nor C′. Then the number of intersection points of

Ct and C′t whose image under Logt converges to p is exactly

equal to m(p).

It is worth remarking that the number of intersection
points which converge to p only depends on C and C′, that
is to say only on the order at infinity of the coefficients of
Pt(z,w) and P′t(z,w).

A combination of Theorem 3.1, Proposition 3.2 and the
tropical version of Bézout’s Theorem provides a proof of Bé-



zout’s Theorem for complex curves. In the next section, we
explore two deeper applications of tropical geometry.

4 Examples of application

Combinatorial construction of real algebraic curves
Given a real polynomial P(z,w), it is usually very difficult
to compute the “picture” realised by the real algebraic curve
with equation P(z,w) = 0 in R2. More generally, the problem
of classifying all possible mutual arrangements of the con-
nected components of a real algebraic curve of a fixed de-
gree is a beautiful but extremely difficult question. This is the
16th problem that Hilbert posed in his famous list, and is still
widely open. Up till now the complete answer is known only
up to degree 7, and the method described below was one of
the tools thanks to which Viro completed this classification.

Tropical geometry produces real algebraic curves whose
arrangement of connected components can be recovered thanks
to some elementary combinatorial rules. Despite its simplic-
ity, this method produces real algebraic curves with very
rich topology. For example, Itenberg disproved drastically in
this way Ragsdale’s conjecture posed one century ago (see
[IV96])!

We now describe this method, known as combinatorial

patchworking. Let Pt(z,w) =
∑

i, j αi, j(t)ziw j be a polynomial
whose coefficients are real valued functions αi, j : R→ R. As
in Theorem 3.1, we suppose that αi, j(t) ∼ γi, jt

ai, j at infinity,
and we denote by C the tropical curve defined by Ptrop(x, y).
For simplicity, we assume the following technical condition:
all weights of C are equal to 1 and, given any vertex v of C and
any two edges e and e′ adjacent to v, the Euclidean area of the
triangle spanned by ~uv,e and ~uv,e′ is the minimum possible, i.e.
| det(~uv,e, ~uv,e′)| = 1. Such a tropical curve is said to be non-

singular. This condition ensures that the complex algebraic
curve defined by Pt(z,w) in (C∗)2 is non-singular when t is
large enough. All the tropical curves depicted in Figures 2
and 3 except the ones of Figures 2c and 3c are non-singular.

We first recover the real algebraic curve defined by Pt(z,w)
in the quadrant (R>0)2. Given an edge e of C adjacent to two
connected components E1 and E2 of R2 \ C, we may assume
that the value of Ptrop(x, y) is given by the monomial “ai, jx

iy j”
on E1 and by “ak,lx

kyl” on E2. Let us erase e if the signs of
γi, j and γk,l coincide.

We denote by RC the piecewise linear curve obtained in
R

2 after performing this operation to all edges of C. For ex-
ample, starting with the tropical curve depicted in Figure 7a,
we obtain the curve depicted in Figure 7b by choosing appro-
priate signs for the coefficients γi, j.

Theorem 4.1 (Viro). For t large enough, the real algebraic

curve defined by Pt(z,w) in (R>0)2 is isotopic to RC.

In other words, the mutual arrangement of the connected
components of the real algebraic curve defined by Pt(z,w) in
the positive quadrant of R2 is given by RC. By symmetry, one
can of course deduce the real curve defined by Pt(z,w) in the
whole plane R2. For example, the signs we chose to obtain
Figure 7b actually produce the real tropical curve depicted
in Figure 7c, which attests the existence of a real algebraic
sextic in R2 arranged as in Figure 7d. Such a curve was first
constructed by Gudkov in the late 60s. An interesting piece of

(a) (b)

(c) (d)

Figure 7. Gudkov curve

trivia is that Hilbert claimed in 1900 that such a curve could
not exist!

Enumerative geometry
Tropical geometry has also turned out to be very fruitful in
enumerative geometry, the art of counting curves.

A double point of a complex algebraic curve C is a point
where two branches of C intersect. The typical example of
such a double point is the intersection point of two lines, and
an irreducible complex algebraic curve of degree d in C2 has
at most (d−1)(d−2)

2 double points. Given two integers d ≥ 1 and

0 ≤ r ≤
(d−1)(d−2)

2 , a simple example of an enumerative prob-
lem is the following: how many irreducible complex algebraic
curves of degree d with r double points pass through a generic
configuration of d(d+3)

2 − r points?
Note that this number does not depend on the choice of

the generic configuration of points (like the number of roots
of a complex polynomial only depends on its degree and not
on its coefficients). It is known as a Gromov-Witten invariant
of the plane and we denote it by N(d, r).

For example, N(1, 0) = 1 since there is a unique line pass-
ing through 2 points and, more generally, N(d, 0) = 1 since
the solution curve is given by an invertible system of lin-
ear equations on its coefficients. The first non-trivial value is
N(3, 1) = 12, i.e. there exist 12 cubic curves with one double
point passing through 8 points.

There exist several methods to compute those numbers
and one of them, suggested by Kontsevich, is via tropical ge-
ometry. Indeed, one can reformulate this classical enumera-
tive problem into tropical terms and the answer turns out to
be the same as in complex geometry. This is a deep and beau-
tiful theorem by Mikhalkin ([Mik05]).

Theorem 4.2 (Mikhalkin). The number of irreducible tropi-

cal curves, counted with multiplicity, of degree d with r dou-

ble points passing through a generic configuration of
d(d+3)

2 −r

points in R2 is equal to the corresponding number of complex

curves.
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Figure 8. N(3, 1) = 12

We do not have space here to define a double point of a
tropical curve or to specify the multiplicity of a tropical curve
(see instead [Mik05] or [BPS08]). Let us just say that those
definitions are completely combinatorial. As an example, we
depict in Figure 8 all tropical cubics with one node passing
through 8 points and we indicate in each case the multiplicity
of the tropical curve. Summing up all those multiplicities, we
find again N(3, 1) = 12.

It is worth mentioning that tropical geometry is also a very
powerful tool in real enumerative geometry. Counting real al-
gebraic curves is much more delicate than counting complex
algebraic curves. One of the main advantages of tropical ge-
ometry is that it solves an enumerating problem by exhibiting

all the solutions. In particular it allows one to count complex
and real curves at the same time. For example, tropical geom-
etry is a very useful tool to compute Welschinger invariants,
a real analogue of Gromov-Witten invariants when r is max-
imum. For example, we can deduce from those Welschinger
invariants and Figure 8 that there always exist at least eight
real cubics with one double point passing through eight points
in the real plane.

Theorem 4.2 has been the starting point of many develop-
ments in tropical enumerative geometry and its applications.
For example, the problem of computing Gromov-Witten and
Welschinger invariants can be turned into a purely combina-
torial problem via the so-called floor diagrams (see [BPS08]).

5 Further in tropical geometry

Tropical varieties of higher (co)dimension
So far we only considered plane tropical curves. What about
tropical varieties of higher dimension and codimension?

We have seen three equivalent definitions of a tropical
curve:

(1) an algebraic one via tropical polynomials;
(2) a combinatorial one via balanced graphs;
(3) a geometric one via limits of amoebas.
All these three definitions can be generalised to arbitrary di-
mension. If they remain equivalent for tropical hypersurfaces
of Rn (see [IMS07]), they produce different objects in higher
codimension. For example, it is known in classical geome-
try that any cubic curve of genus 1 in CP3 is contained in a
plane. However, there exist tropical cubics of genus 1 in the 3-
space which are not contained in any tropical hyperplane (see
[Mik05]). Such a pathological tropical curve cannot be a limit
of amoebas of any family of spatial complex cubic curves.

The problem of determining which balanced polyhedral
complexes are limits of amoebas is very important in tropical
geometry and is still widely open.

Tropical projective spaces
The logarithm transforms multiplications to additions. As a
consequence, any operation performed in complex algebraic
geometry using only monomial maps translates mutatis mu-
tandis in the tropical setting. In other words, tropical toric
varieties can be constructed exactly as in complex geometry.
Let us illustrate this with a classical construction: projective
spaces.

The projective line CP1 may be obtained by taking two
copies of C, with coordinates z1 and z2, and gluing them
along C∗ via the identification z2 = z−1

1 . Similarly, the pro-
jective plane CP2 can be constructed by taking three copies
of C2, with coordinates (z1,w1), (z2,w2) and (z3,w3), and glu-
ing them along (C∗)2 via the identifications

(z2,w2) = (z−1
1 ,w1) and (z3,w3) = (z1,w

−1
1 ).

Since “x−1” = −x, the above constructions also yield the pro-
jective tropical line TP1 and plane TP2. In particular, we see
that TP1 is a segment (Figure 9a) and TP2 is a triangle (Figure
9b). More generally, the projective space TPn is a simplex of
dimension n, each of its faces corresponding to a coordinate
hyperplane.

For example, the tropical 3-spaceTP3 is a tetrahedron (see
Figure 9c). Note that tropical projective spaces carry much
more than just a topological structure: since all gluing maps
are classical linear maps with integer coefficients, each open
face of dimension p can be identified to Rp together with the
lattice Zp inside.

As usual, the space R2 = (T∗)2 embeds naturally into TP2

and any tropical curve in R2 has a closure in TP2. For exam-
ple, we depict in Figure 9d the closure in TP2 of a tropical
line in R2.

Tropical modifications
A new feature of tropical geometry comes out at that point:
the polymorphism of tropical objects.

Over the complex numbers, there is no difference between
an abstract projective line and a line in CP2; they are isomor-
phic. However, the tropical version of these two different situ-
ations produces two different objects: a segment in Figure 9a
and a tripod in Figure 9d. It seems that we constructed two
different tropical projective lines . . .

What does it mean? What is the relation between these
two tropical manifestations of the same projective line? For-
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Figure 9. Tropical projective spaces

getting the second coordinate in TP2, the tropical line is pro-
jected to the horizontal side of the triangle. However, this side
is nothing else but . . . the TP1 of Figure 9a (see Figure 10a).
Hence, even if we constructed two different TP1, they are re-
lated by this projection of the tripod to the segment which
contracts an edge of the tripod.

This phenomenon is not specific to the one dimensional
case. For example, we depict in Figure 10b the tropical pro-
jective plane Π obtained by taking the closure in TP3 of a
tropical plane in R3. Forgetting the third coordinate induces
a projection from Π to the triangle TP2, which contracts 3 of
the 6 faces of Π to a tropical line (see Figure 10c).

These two projections are examples of the so-called trop-

ical modifications. Any tropical variety has infinitely many
models as polyhedral complexes, and all these models are re-

(a) (b)

(c)

Figure 10. Tropical modifications

lated by a sequence of tropical modifications. So the two trop-
ical projective lines or planes that we constructed above are
not two different TP1 or TP2 but two different representatives

of TP1 and TP2.
What is the significance of those infinitely many tropical

representatives of the same variety? Given a family of com-
plex algebraic varieties X = (Xt)t>0, there is no canonical way
of associating a tropical variety to X. In other words, X has
no canonical tropicalization. All embeddings of (open subsets
of) X as a family in (C∗)n will produce as many different bal-
anced polyhedral complexes in Rn. However, all those trop-
ical representatives are related by tropical modifications and
the consideration of all those tropical modifications (or rather
the inverse limit) is the tropicalization of X. This is a topolog-
ical space, which is homeomorphic to another construction in
algebraic geometry: the analytification in the Berkovich sense
of X (see [Pay09]).

Hence, given some problem on X, one step in the tropi-
cal approach is to choose the simplest tropical representative
of the tropicalization of X for which tropical geometry can
actually help.
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