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Floor diagrams in [BM08] were obtained by stretching a configuration of points in CP 2 relatively
to a line. Another way to think about it is that we specialize one by one the points to the normal
bundle of the line in question. If we play the same game with respect to a conic, everything works
the same. In particular, we end up with tropical curves having very simple floor decomposition.
Since enumerative invariants of CP 2 relative to a conic underly these new floor diagrams, these
latter contain floors of degree 1 and 2 (respectively of divergence 2 and 4 in what follows), floors of
degree 1 being special.

Note that if we stretch our configurations of points relatively to a smooth curve of degree 3 or
more, then some superabundant situations appear and the problem becomes much more complicated.

Given d ≥ 1 and g ≥ 0, we denote by N(d, g) the number of complex irreducible algebraic curves
of degree d and genus g in CP 2 passing through a generic configuration of 3d − 1 + g points. We
also denote by W (d, r) the Welschinger invariant of RP 2 of degree d for configuration of points with
exactly r pairs of complex conjugated points.

1. Floor diagrams

Let Γ be a finite oriented graph. We say that Γ is acyclic if it does not contain any non-trivial
oriented cycle. We denote the set of its vertices with V ert(Γ) and the set of its (open) edges with
Edge(Γ). We denote by V ert∞(Γ) the set of sources (i.e. the vertices such that all their adjacent
edges are outgoing), and with Edge∞(Γ) the set of edges adjacent to a source. Finally we put

V ert(Γ) = V ert(Γ) \ V ert∞(Γ).
We say that Γ is a weighted graph if each edge of Γ is prescribed a natural weight, i.e. we are

given a function w : Edge(Γ) → N. The weight allows one to define the divergence at the vertices.
Namely, for a vertex v ∈ V ert(Γ) we define the divergence div(v) to be the sum of the weights of
all incoming edges minus the sum of the weights of all outgoing edges.

Definition 1.1. A connected weighted oriented graph D is called a floor diagram of genus g, degree
d, and relative degree 2 if the following conditions hold

• The oriented graph D is acyclic.
• We have div(v) = 2 or 4 for any v ∈ V ert(D) and div(v) = −1 for every v ∈ V ert∞(D).
• If div(v) = 2 for v ∈ V ert(D), then v is a sink (i.e. all its adjacent edges are oriented toward

this vertex).
• The first Betti number b1(D) equals g.
• The set V ert∞(D) consists of 2d elements.

We call a vertex v ∈ V ert(D) a floor of divergence div(v). Note that there are slight differences
with the definition of floor diagrams in [BM07] and [BM08].

Here are the convention we use to depict floor diagrams : vertices of D are represented by ellipses.
Edges of D are represented by vertical lines, and the orientation is implicitly from down to up. We
write the weight of an edge close to it only if this weight is at least 2.
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Example 1.2. Figure 1 depicts all floor diagrams of relative degree 2 and of degree 1, 2 and 3.

2

a) d = 1, g = 0 b) d = 2, g = 0 c) d = 3, g = 1 d) d = 3, g = 0 e) d = 3, g = 0

Figure 1. Examples of floor diagrams of relative degree 2

A map m between two partially ordered sets is said increasing if

m(i) > m(j) =⇒ i > j

A floor diagram inherit a partial ordering from the orientation of its underlying graph.

Definition 1.3. A marking of a floor diagram D of genus g, degree d and relative degree 2 is an
increasing map m : {1, . . . , 3d− 1 + g} → D such that

(1) for any edge or vertex x of D, the set m−1(x) consists at most of one element.
(2) a vertex of D is in the image of m if and only if it is of divergence 4.

A floor diagram of relative degree 2 enhanced with a marking is called a marked floor diagram
and is said to be marked by m.

Definition 1.4. Two marked floor diagrams (D,m) and (D′,m′) are called equivalent if there exists
a homeomorphism of weighted oriented graphs φ : D → D′ such that m = m′ ◦ φ.

Hence, if m(i) is an edge e of D, only the knowledge of e is important to determine the equivalence
class of (D,m), not the position of m(i) on e. From now on, we consider marked floor diagrams up
to equivalence.

2. Enumeration of complex curves

The complex multiplicity of a marked floor diagram is defined as in [BM08].

Definition 2.1. The complex multiplicity of a marked floor diagram D, denoted by µC(D), is defined
as

µC(D) =
∏

e∈Edge(D)

w(e)2

Note that the complex multiplicity of a marked floor diagram depends only on the underlying
floor diagram.

Theorem 2.2. For any degree d ≥ 1 and any genus g ≥ 0, one has

N(d, g) =
∑

µC(D)

where the sum is taken over all marked floor diagrams of genus g, degree d and relative degree 2.

Example 2.3. Counting how many markings admit the floor diagrams depicted in Figure 1 we
verify that N(1, 0) = N(2, 0) = N(3, 1) = 1 (Figures 1a, b and c), and N(3, 0) = 4+8 = 12 (Figures
1d and e).
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As in the case of Gromov-Witten invariants of CP 2 relative to a line, one can modify slightly
Theorem 2.2 to compute all Gromov-Witten invariants of CP 2 relative to a conic. One can also
write recursive formulas following the method exposed in [ABLdM].

3. Enumeration of real curves

Now suppose that our relative conic is real. There exist two topological types of smooth conics
in RP 2, and we can either choose this conic with a non-empty or an empty real part. This will give
rise to two possible real floor diagrams. Here we restrict ourselves to the two simplest situations:
either all points are real and the conic has a non-empty real part, or all, except maybe 1, points are
complex. It is interesting to remark that in the latter case, the final floor diagrams do not depend
wether the conic has an empty real part or not.

It is in principle possible to mix these two possibilities, and I guess this should lead to interesting
results.

3.1. Real floor diagrams with respect to a totally real configuration. Here we study floor
diagrams when all points are real. Since all points are lye in the normal bundle of the conic, this
latter necessarily has a non-empty real part. In this case, the real multiplicity of a marked floor
diagram is as in [BM08].

Definition 3.1. The totally real multiplicity of a marked floor diagram, denoted by µRtot(D,m), is
defined as

µRtot(D,m) = 1

if all edges of D are of odd weight, and as

µRtot(D,m) = 0

otherwise.

As in the complex case, the totally real multiplicity of a marked floor diagram only depends on
its underlying graph.

Theorem 3.2. For any degree d ≥ 1 one has

W (d, 0) =
∑

µRtot(D,m)

where the sum is taken over all marked floor diagrams of genus 0, of degree d and relative degree 2.

Example 3.3. Out of our computations in Example 2.3 we verify that W (1, 0) = W (2, 0) = 1
(Figures 1a, and b), and W (3, 0) = 0 + 8 = 8 (Figures 1d and e).

One can modify Theorem 3.2 to compute Welschinger invariants W (d, r) for any couple (d, r),
exactly as in [BM08]. We don’t do it here since it doesn’t seem to enlighten the situation and would
have made the notation much more heavy.

3.2. Real floor diagrams with respect to a real configuration containing at most one
real point. This case is much more interesting, and is the tropical/floor diagram version of [Wel].
In the opposite of the precedding case, we restrict ourselves here to the case when all points, except
maybe 1, are complex. Next definition can be extended to the general case as in [BM08], but so far
we state it only in the case of real configurations with at most one real point.

Definition 3.4. Let D be a floor diagram of genus 0 and relative degree 2, and ρ : D → D a
continuous involution of weighted oriented graphs. The pair (D, ρ) is called a real floor diagram of
relative degree 2 if ρ has only one fixed point.
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Note that if (D, ρ) is a real floor diagram of relative degree 2 then the fixed point of ρ is necessarily
a floor v of D, with div(v) = 4 if D has even degree and with div(v) = 2 otherwise.

Let us denote by D1 the quotient of D \ {v} by ρ.

Definition 3.5. An imaginary-real marking of a real floor diagram (D, ρ) of genus 0, degree d and
relative degree 2 is an increasing map m : {1, . . . ,

[
3d−1

2

]
} → D1 such that

(1) for any edge or vertex x of D1, the set m−1(x) consists at most of one element.
(2) a vertex of D1 is in the image of m if and only if it is of divergence 4.

The imaginary-real multiplicity of a real marked floor diagram (D, ρ,m), denoted by µRim(D, ρ,m),
is defined as

µRim(D, ρ,m) = 22−b0(D1)
∏

e∈Edge(D1)

w2(e)

We have an obvious notion of equivalent imaginary-real marked floor diagrams. Note that the
imaginary-real multiplicity of a real floor diagram of relative degree 2 still only depends on the
underlying graph.

Theorem 3.6. For any degree d ≥ 1, one has

W

(
d,

[
3d− 1

2

])
= 2[ 3d−5

2 ](−1)
(d−1)(d−2)

2

∑
µRim(D, ρ,m)

where the sum is taken over all imaginary-real marked floor diagrams of genus 0, of degree d and
relative degree 2.

Example 3.7. The floor diagrams on Figures 1a and b are both real, and we verify that W (1, 1) =
W (2, 2) = 1.

On the opposite, none of the floor diagrams on Figures 1d and e are real, so we get W (3, 4) = 0.
It is also easy to see that there does not exist any real marked floor diagram of genus 0, degree 4

and relative degree 2, i.e. W (4, 5) = 0.
In degree 5, there exists only one real marked floor diagram of genus 0 and relative degree 2 (See

Figure 2a). We verify that W (5, 7) = 26.
In degree 6, there exists only two real marked floor diagrams of genus 0 and relative degree 2 (See

Figures 2b and c). We verify that W (6, 8) = 26(8 + 2× 4) = 210.
In degree 7, there exist only two real marked floor diagram of genus 0 and relative degree 2 (See

Figures 2d and e). We verify that W (7, 10) = −28(2× 20 + 2× 8) = −14336.

2 2
2 2

a) d = 5 b) d = 6 c) d = 6 d) d = 7 e) d = 7

Figure 2. Real floor diagrams of genus 0, of relative degree 2, and of degree 5, 6, and 7

3.3. The mixed case. Work in progress!
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dimension quatre. arXiv:0707.4317.
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