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Abstract

In this note we compute some enumerative invariants of real and complex projective spaces by means of some

enriched graphs called floor diagrams.

1. Introduction: enumerative invariants of real and complex projective spaces

The subject of this note is the number of curves passing through configuration of linear spaces in RPn

and CPn. To set up an enumerative problem we fix integer numbers d ≥ 1, g ≥ 0 and n ≥ 2. Then we look
at the algebraic curves of degree d and genus g in RPn or CPn. Namely, by the curves of genus g in CPn

we mean the images of Riemann surfaces of genus g under holomorphic maps to projective spaces; by the
curves in RP

n we mean the real points of those curves in CP
n that are invariant under the involution of

complex conjugation.
By the Riemann-Roch formula, the space of all such curves has dimension greater or equal than (n +

1)d + (n − 3)(1 − g). Furthermore, we always have equality in the case when n = 2 or in the case when
g = 0 for n > 2. These are the two cases that we are concerned with in this note.

Let us fix a generic configuration P of projective-linear subspaces (of different dimensions) in RPn or
CPn, so that we have lj subspaces of dimension j = 0, . . . , n−2. These subspaces are known as constraints
of dimension j. It can be shown that if

n−2
∑

j=0

lj(n − 1 − j) = (n + 1)d + (n − 3)(1 − g) (1)

then the number of curves of degree d and genus g passing via P is finite (recall that our assumption was
that g = 0 whenever n > 2). Furthermore, if we work in CPn then this number does not depend on the

choice of P and is known as the Gromov-Witten number, which we denote by N
(n)
d,g (l0, . . . , ln−2). These
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invariants are well-known; they were computed by Kontsevich (see [4]) in the case of g = 0 and arbitrary
n and by Caporaso and Harris (see [2]) in the case of n = 2 and arbitrary g.

Much less is known if we work in RP
n. Certainly in this case the number of curves of degree d and

genus g depends not only on the numbers lj but also on the choice of the configuration P . Nevertheless,
Welschinger proved in [7], [8] that in the case when n = 2, 3, g = 0 and lj = 0 for any j > 0, there is
a consistent choice of signs ±1 such that the number of the corresponding real curves counted with the
sign depends only on d (note that the assumption lj = 0 for j > 0 allows us to determine l0 once we fix

d by (1) ). These numbers are known as the Welschinger numbers, we denote them with W
(n)
d .

The technique for computation of the numbers W
(2)
d was given in [5] as an application of tropical

geometry. It was used in [3] to produce several estimates for these numbers. In particular, we have

W
(2)
d > 0 for any d. By symmetry reason we have W

(3)
d = 0 for any even d, but the values of W

(3)
d

remained unknown for odd d even for d = 5.
In this note we announce a technique which allows a simultaneous computation of N

(n)
d,g (l0, . . . , ln−2)

and W
(n)
d (for n = 2, 3). The details will be given in [1] along with a somewhat more general computation

of the number of real curves in the case when the configuration P contains pairs of complex conjugate
subspaces.

2. Floor diagrams

Let Γ be a finite oriented graph. We say that Γ is acyclic if it does not contain any non-trivial oriented
cycle (in the same time the first Betti number of Γ may be high). We denote the set of its vertices with
Vert(Γ) and the set of its (open) edges with Edge(Γ). We denote by Vert∞(Γ) the set of sinks (i.e. the
vertices such that all their adjacent edges are incoming), and with Edge∞(Γ) the set of edges adjacent to
a sink. Finally we put Vert(Γ) = Vert(Γ) r Vert∞(Γ).

We say that Γ is a weighted graph if each edge of Γ is prescribed a natural weight, i.e. we are given a
function w : Edge(Γ) → N. The weight allows one to define the divergence at the vertices. Namely, for
a vertex v ∈ Vert(Γ) we define the divergence div(v) to be the sum of the weights of all outgoing edges
minus the sum of the weights of all incoming edges.
Definition 2.1 A connected weighted oriented graph D is called a floor diagram of genus g and degree d

if the following conditions hold.
– The oriented graph D is acyclic.
– We have div(v) > 0 for any v ∈ Vert(D) and div(v) = −1 for every v ∈ Vert∞(D).
– The first Betti number b1(D) equals g.
– The set Vert∞(D) consists of d elements.
We call a vertex v ∈ Vert(D) a floor of degree div(v).

Let l0, . . . , ln−2 ≥ 0 be integer numbers subject to (1) and P = {x
(0)
1 , . . . , x

(0)
l0

, . . . x
(n−2)
1 , . . . , x

(n−2)
ln−2

}

be the ordered set of
n−2
∑

j=0

lj elements. We define dim(x
(j)
k ) = j. Let m : P → Dr Vert∞(D) be a map. Let

D>e be the component of D r e that contains the arrowhead of e. We define the height of e by h(e) = 0
if g > 0 and otherwise by

h(e) =
∑

q∈P, m(q)∈D>e

(

n − 1 − dim(q)
)

+ 1 − w(e) − (n + 1)
∑

v∈Vert(D)∩D>e

div(v).

(The meaning of the height is the dimension of the constraint we have to put on e to make D>e rigid.)
Definition 2.2 The map m is called the marking of D if it satisfies to the following properties.
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– If m(q) = m(q′) for q < q′ ∈ P then m(q) is a vertex and dim(q) > 0.
– For any v ∈ Vert(D), there exists q ∈ P such that m(q) = v.
– If q′ > q and m(q′) < m(q), then there exists q′′ such that m(q) = m(q′′) and q′′ > q′.
A floor diagram D enhanced with a marking is called the marked floor diagram, and is said to be marked
by P . Two marked floor diagrams are called equivalent if they can be identified by a homeomorphism of
oriented graphs. They are called to be of the same combinatorial type if there exists a bijection σ : P → P
that preserves the dimension of the constraints and such that (D, m) is equivalent to (D, m ◦ σ).

To each marked floor diagram D, we may associate its complex and real multiplicities µC(D) and µR(D).
These multiplicities record the number of complex and real curves (respectively) encoded by the diagram.

The definition is inductive by n. Take a floor v ∈ Vert(D) of degree div(v). For the maximum element

x
(j)
k of m−1(v) (recall that P is ordered), take a linear space of dimension j. For each other element x

(j′)
k′

in m−1(v), take a linear space of dimension j′ − 1. Take a linear space of dimension h(e) for each edge e

incoming to v. For each edge e outgoing from v take a linear space of dimension

n − 1 − h(e) −
∑

q∈P, m(q)∈e

(

n − 1 − dim(q)
)

.

If any of these numbers is outside of the range between 0 and (n−2) then we set both the real and complex
multiplicity of D equal to 0. Otherwise denote the number of resulting j-dimensional linear spaces with

l
(v)
j and define µC(v) = div(v)l

(v)
n−2N

(n−1)
div(v),0(l

(v)
0 , . . . , l

(v)
(n−3)) and

µC(D, m) =
∏

v∈Vert(D)

µC(v)
∏

e∈Edge(D)

(w(e))1+#(m−1(e)).

Here #(m−1(e)) is the number of elements in the inverse image of an open edge e. To fix the base of

induction for n = 1 we define N
(1)
1,0 = 1 and N

(1)
a,b = 0 for (a, b) 6= (1, 0). If g = 0 and lj = 0 for j ≥ 1 then

we also define the real multiplicity

µR(D) =
∏

v∈Vert(D)

W (n−1)(div(v)) if w(Edge(D)) ∩ 2N = ∅ and µR(D) = 0 otherwise.

We put W
(1)
1 = 1 and W

(1)
d = 0 for d > 1.

Note that for n = 2, both real and complex multiplicities have a very simple form. For any diagram
with the non-zero multiplicity we have h(e) = 0 for any e ∈ Edge(D) and div(v) = 1 for any v ∈ Vert(D),
so µC(D) is the square of the product of the weight of all edges of D, and µR(D) = µC(D) mod 2. Note
also that all marked floor diagrams of the same combinatorial type have the same multiplicities.

In the examples of combinatorial types of marked floor diagrams we give below, the convention we use
are the following : the graph D is oriented from up to down, vertices are represented by ellipses with its
degree written inside, edges are represented by solid lines close of which is written its weight (except if
it is 1), and the images of m are represented by a set of points on D. Below any combinatorial type, we
write the number of marked floor diagram of this combinatorial type, and the complex and real (if any)
multiplicities of such a floor diagram.
Example 1 In Figure 1, we depict all 2-dimensional marked floor diagrams of degree 3 with non null
multiplicity. In Figure 2 (resp. 3), we depict all 3-dimensional marked floor diagrams of degree 5 and
marked by 10 points (resp. of degree 2 and marked by 8 lines) with non null multiplicity.
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1, µC = 1 3, µC = 1, µR = 1 5, µC = 1, µR = 1 1, µC = 4, µR = 0

Figure 1. 2-dimensional marked floor diagrams of degree 3
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3, µC = 12, µR = 8 21, µC = 1, µR = 1 6, µC = 8, µR = 0

Figure 2. 3-dimensional marked floor diagrams of degree 5, genus 0, and marked by 10 points
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5, µC = 1 3, µC = 1 10, µC = 1 12, µC = 1 3, µC = 1 5, µC = 1 3, µC = 1
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10, µC = 1 12, µC = 1 3, µC = 1 1, µC = 8 3, µC = 4 3, µC = 2

Figure 3. 3-dimensional marked floor diagrams of degree 2, genus 0, and marked by 8 lines

3. Main Formulas

Theorem 1 For n = 2 or g = 0, the number N
(n)
d,g (l0, . . . , ln−2) is equal to the sum of the complex

multiplicity of all floor diagrams of degree d, genus g marked by P.

Example 2 Using marked floor diagrams depicted in Figures 1, 2, and 3, we verify that N
(2)
3,1 (9) = 1,

N
(2)
3,0 (8) = 12, N

(3)
5,0 (10, 0) = 105, and N

(3)
2,0 (0, 8) = 92.

Example 3 Using Theorem 1, one can compute the numbers N
(2)

d,
(d−1)(d−2)

2 −1
(d(d+3)

2 − 1) = 3(d − 1)2 (the

degree of the discriminant) and N
(2)

d,
(d−1)(d−2)

2 −2
(d(d+3)

2 − 2) = 3
2 (d − 1)(d − 2)(3d2 − 3d − 11), cf. [6].

Theorem 2 For n = 2 or n = 3, the Welschinger invariant W
(n)
d is equal to (−1)

n(d−1)(d−2)
2 times the

sum of the real multiplicity of all n-dimensional floor diagrams of degree d, genus 0 marked by P with
lj = 0 for j > 0.

The two-dimensional Welschinger invariants were studied by Itenberg, Kharlamov and Shustin [3] who
obtained a number of estimates on these invariants. Theorem 1 and 2 allow one not only to recover these
results but also to show that similar results hold for the 3-dimensional invariants W (3).
Example 4 We list the values of N

(3)
d,0 (2d, 0) and W

(3)
d up to degree 7.
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d 1 2 3 4 5 6 7

N
(3)
d,0 (2d, 0) 1 0 1 4 105 2576 122129

W
(3)
d 1 0 −1 0 45 0 −14589

Proposition 3 The 3-dimensional Welschinger invariants have the following properties :

– For any k > 1, |W
(3)
2k+1| > |W

(3)
2k−1|.

– The sequences (W
(3)
(2k+1)) and (N

(3)
2k+1,0(4k + 2, 0)) are logarithmically equivalent, i.e.

log(|W (3)(2k + 1)|) ∼ 4k log k ∼ log(N
(3)
2k+1,0(4k + 2, 0)).

– For any d ≥ 1, |W
(3)
d | = N

(3)
d,0 (2d, 0) mod 4.

To deduce Theorems 1 and 2 we use tropical geometry. The main technical ingredient is the following
lemma (stated in the notation of Section 1, and where P is here a configuration of tropical linear subspaces
in Rn).
Lemma 4 Let HC be a hypercube containing all vertices of all elements of P. Then HC contains all the
vertices of any tropical curve of degree d and genus g in Rn passing through elements of P.

4. Further remarks

– Results of this note can be extended from projective spaces to some other (but not all) toric varieties.
– As in [5], one can count how many real curves pass through some special real configurations P . For

example, one can choose 8 real lines in RP3 such that the 92 conics passing through these lines are real.
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