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Remerciements

Je souhaite remercier vivement Mark Gross, Oleg Viro et Jean-Yves Welschinger d’avoir accepté d’être
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Chapter 1

Introduction

1.1 Première prise

Le problème principal abordé dans ce mémoire est celui de l’énumération de courbes complexes et
réelles dans un variété X, sujettes à des conditions d’incidence avec une configuration x de contraintes
géométriques. On supposera toujours implicitement que le nombre et les dimensions des éléments de x
sont tels que le nombre attendu de ces courbes est fini. Plus spécifiquement, nous nous intéresserons aux
espaces ambiants X suivants1:

1. les surfaces toriques;

2. CP 2 éclaté en des points situés sur une conique lisse;

3. les surfaces de Del Pezzo;

4. les espaces projectifs;

5. les variétés rationnelles symplectiques de dimension 4.

Si l’on compte les courbes complexes, alors la réponse dépend uniquement des classes d’homologies
réalisées par les contraintes et les courbes énumérées, ainsi que du genre de ces dernières. Ces nombres
sont appelés invariants de Gromov-Witten (relatifs) de X. L’invariance par rapport aux représentants
spécifiques des éléments de x peut être établie en reformulant le problème initial en un calcul de nombre
d’intersection dans un certain espace de module canoniquement orienté. Cette observation, remontant au
moins aux géomètres du XIXème siècle, est le point de départ de formidables et profonds développements
en géométrie énumérative complexe basés sur la théorie de l’intersection. Le lecteur intéressé trouvera
dans [Kle76, KV06] d’excellentes introductions à ce sujet, voir aussi [MS12].

En ce qui concerne l’énumération des courbes réelles, une adaptation directe de cette approche basée
sur la théorie de l’intersection soulève de nombreuses complications par rapport à la situation complexe.
Une de raisons pour cela, et non des moindres, est que de nombreux espaces de modules en géométrie
réelles ne sont pas orientables. Il est bien sûr possible de considérer homologie et intersections à coefficients

1La structure complexe standard est fixée dans les quatre premiers cas, et peut varier dans le dernier.
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dans Z/2Z, mais une application näıve de cette idée ne conduit qu’à une réduction modulo 2 des invariants
de Gromov-Witten correspondants.

La réponse à un problème énumératif réel dépend en général drastiquement du choix de x, et du choix
potentiel d’une structure presque complexe sur X. Le nombre de courbes réelles est clairement majoré
par le nombre de courbes complexes, et ces deux nombres ont même parité. On ne peut cependant guère
en dire plus au premier abord... Néanmoins, l’existence de meilleures bornes inférieures en géométrie
énumérative réelle a été observée depuis un certain temps déjà, nous renvoyons par exemple au calcul de
Kharlamov datant des années 70 [DK00, Proposition 4.7.3], ou aux travaux de Gabrielov et Eremenko sur
le calcul de Schubert réel [EG02].

Lorsque X est une variété symplectique réelle de dimension 4, Welschinger a proposé dans [Wel03,
Wel05a] d’énumérer les courbes réelles rationnelles avec un poids ±1, de telle sorte que la somme pondérée
de ces courbes réelles devienne indépendante du choix de x et du choix2 générique d’une structure presque
complexe compatible J sur X. Ces invariants de Welschinger minorent en particulier le nombre de courbes
réelles pour n’importe quel choix générique de x et J , et fournissent un outil puissant dans l’étude des
bornes inférieures en géométrie énumérative réelle. Remarquons que ce type d’invariants en géométrie
énumérative réelle est lié aux invariants de Gromov-Witten ouverts, c’est à dire au dénombrement de
surfaces de Riemann à bord. L’avancée majeure initiée par Welschinger conduisit à la découverte de
nouveaux invariants, principalement en genre 0, en géométrie énumérative réelle (e.g. [Wel05b, Wel07,
Wel06, Wel11, Wel13, Sol06, PSW08, OT14, FK13, KR13, Geo13, Shu14]), ainsi qu’au développement
des méthodes pour les calculer (e.g. [Mik05, IKS03, IKS04, IKS09, IKS13c, IKS13b, IKS13a, Wel07,
PSW08, Teh13, HS12, KR13, GZ13, BM07, BM08, BMa, ABLdM11, BP14, Bru14]). Mentionnons aussi
les invariants raffinés des surfaces projectives complexes introduits par Göttsche et Shende dans [GS12],
invariants polynomiaux interpolant conjecturalement entre les invariants de Gromov-Witten et certains
invariants de Welschinger.

Il est intéressant de remarquer que l’utilisation d’invariants énumératifs réels peut aussi fournir des
bornes supérieures non triviales. Le premier (et unique) exemple porté à notre connaissance est celui
de la preuve de Klein [Kle76] du fait qu’au plus un tiers des points d’inflexions complexes d’une courbe
algébrique réelle plane non singulière peuvent être réels3, où cette majoration est déduite de l’invariance
d’une quantité définie à partir du nombre de points d’inflexions réels et de bitangentes réelles d’une telle
courbe (nous renvoyons aussi à la Section Section 6.1).

Malgré les récent et impressionnants progrès dans la découverte d’invariants énumératifs réels, seule
une faible proportion des invariants complexes ont pour l’instant trouvé un pendant réel. Par conséquent,
l’adaptation des méthodes de géométrie complexe basées sur la théorie de l’intersection reste une tâche non
triviale, ces dernières faisant généralement intervenir des invariants complexes sans analogue réel connu.

Une autre possibilité pour appréhender un problème énumératif est de construire une configuration x
pour laquelle il est possible d’exhiber toutes les solutions. De telles configurations sont dites effectives.
L’avantage majeur de ce type de configurations est de permettre l’énumération simultanée des courbes
complexes et réelles, et ce sans supposer une quelconque invariance relativement à x. Ce dernier point
est particulièrement appréciable en géométrie réelle, où, comme mentionné plus haut, les invariants ont
tendance à faire défaut. Une autre propriété avantageuse de ces configurations effectives est de mettre
en lumière, en plus de permettre leur calcul, certaines propriétés qualitatives des invariants considérés.
À titre d’exemple, des résultats concernant le signe des invariants de Welschinger, leur optimalité, leurs
propriétés arithmétiques, leur annulation, ainsi que leur comparaison avec les invariants de Gromov-Witten
sont obtenus de cette manière dans [IKS03, IKS04, IKS09, IKS13c, IKS13b, IKS13a, Wel07, Kol14, BM07,
BM08, BP13a, BP14, Bru14]. Mentionnons aussi les résultats d’optimalité concernant le calcul de Schubert

2Dans le cas des surfaces de Del Pezzo, on peut choisir pour J la structure complexe standard sur X.
3Dans le cas des quartiques, on peut reformuler abstraitement cet énoncé: au plus 8 des 24 points de Weierstrass d’une

courbe algébrique réelle de genre 3 non hyperelliptique peuvent être réels.
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réels [Sot97, EG02, Vak06] et les nombres caractéristiques [RTV97], ainsi que la construction d’un espace
de Fock pour les degrés de Severi de CP 1×CP 1 [CP12], obtenus en utilisant des configurations effectives.

Parmi les techniques disponibles pour construire des configurations effectives, citons les méthodes
basées sur la géométrie tropicale [Mik05], la formule de dégénérescence de Li [Li02, Li04] dans le cadre
algébrique, les formules de la somme symplectique dans le cadre symplectique [IP04, LR01, TZ14], ou plus
généralement la théorie symplectique des champs [EGH00]. Pour schématiser grossièrement, ces méthodes
consistent à dégénérer l’espace ambiant X afin de ramener sa géométrie énumérative à celle d’une (ou
plusieurs) union(s) ∪iYi d’espaces Yi “plus simples”. Cette réduction nécessite de considérer les invariants
de Gromov-Witten relatifs aux diviseurs Ei,j = Yi ∩ Yj , autrement dit d’énumérer les courbes soumises à
des conditions d’incidences et d’intersections avec les diviseurs Ei,j . Un aspect important de ces méthodes
de dégénérescences est que dans certains cas favorables, en particulier lorsque X est de dimension réelle
4, les déformations dans X d’une courbe dans ∪iYi dépendent uniquement de ses intersections avec les
diviseurs Ei,j . Lorsque tel est le cas, on peut par conséquent construire des configurations effectives dans
X à partir de configurations effectives dans les Yi.

Cette stratégie générale étant posée, il est néanmoins généralement non trivial de trouver une dégénéres-
cence appropriée de X permettant de déduire des configurations effectives dans X. L’objectif de ce
mémoire est d’illustrer quelques méthodes permettant d’obtenir de telles dégénérescences, en utilisant
les trois techniques mentionnées ci-dessus. Les cadres et champs d’applications de ces dernières diffèrent
sensiblement, et nous présentons diverses situations où l’emploi de l’une d’entre elles semble préférable
aux autres. Bien souvent, le choix d’une technique particulière reste cependant une affaire de goûts.

Les contributions principales présentées dans ce tapuscrit sont regroupées dans trois chapitres:

• Énumération de courbes via les diagrammes en étages (Chapitre 3)

La technique de décompositions en étages a été élaborée en collaboration avec Mikhalkin dans [BM07,
BM08, BMa], et fournit une méthode efficace pour construire des configurations effectives. Dans
le cas où X est de dimension réelle 4, le point de départ est d’observer qu’une configuration d’au
plus deux points dans une surface de Hirzebruch (i.e. un fibré holomorphe en CP 1 sur CP 1) est
toujours effective. La stratégie est alors de choisir une courbe rationnelle adéquate E dans X, de
dégénérer X en l’union de X et d’une châıne de copies du fibré normal (compactifié) de E dans
X, et de choisir une configuration d’au plus deux points dans chacune de ces copies. Dans les cas
favorables, l’union de tous ces points peut être déformée en une configuration effective x dans X.
Lorsque c’est le cas, toutes les courbes complexes et réelles passant par x peuvent être codées par
des objets purement combinatoires appelés des diagrammes en étages. En dimensions supérieures,
les diagrammes en étages codent récursivement sur la dimension de l’espace ambiant la construction
de configurations effectives x, ainsi que la reconstruction de toutes les courbes contraintes par x.

Nous esquissons plus en détails cette technique à la Section 3.1, ainsi que ses liens avec l’approche
proposée par Caporaso et Harris (voir [CH98, Vak00a, Vak00b, GM07a] en rapport avec ce mémoire).
Nous explicitons ensuite trois situations où l’énumération de courbes peut être remplacée par le
dénombrement combinatoire de diagrammes en étages:

(a) X est une surface torique et E un diviseur torique satisfaisant une condition de h-transversalité;

(b) X est CP 2 éclaté en n point sur une conique lisse, et E est la transformée stricte de cette
conique;

(c) X = CPn et E est un hyperplan.

Nous utilisons des méthodes tropicales dans les cas (a) et (c), et la formule de Li dans le cas (b).
Remarquons que X peut être singulière dans le cas (a), ce qui rend intéressant l’utilisation de la
géométrie tropicale. D’un autre côté, la situation (b) n’est pas torique en général, ce qui rend plus
pratique l’utilisation des formules de dégénérescences algébriques ou symplectiques.

3
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Nous terminons ce Chapitre 3 en présentant diverses applications des diagrammes en étages: étude
qualitative des invariants de Welschinger, optimalité des bornes supérieures pour les problèmes
énumératifs concernant les coniques, polynomialité (par morceaux) des invariants de Gromov-Witten.

Les résultats présentés au Chapitre 3 rendent compte des travaux [BM07, BM08, BMa, ABLdM11,
BP13b, Bru14, AB].

• Trois dégénérescences de surfaces (Chapitre 4)

Nous donnons trois exemples d’applications des dégénérescences de surfaces en géométrie énumérative.

(a) Nous établissons à la Section 4.1 l’annulation d’une grande partie des invariants de Welschinger
des variétés symplectiques de dimension 4. Nous relions aussi les invariants de Welschinger
d’une variété symplectique rationnelle de dimension 4 donnée équipée de différentes structures
réelles. Ces résultats sont obtenus en dégénérant une telle variété vers une variété nodale.
Pour modéliser cette dégénérescence, nous présentons la variété symplectique comme somme
symplectique d’elle même avec le fibré normal (compactifié) du cycle évanescent Lagrangien
réel correspondant.

(b) Dans la Section 4.2, nous calculons les invariants de Gromov-Witten et de Welschinger des
surfaces de Del Pezzo à partir des diagrammes en étages relatifs à une conique introduits à la
Section 3.2.2. En première approximation, cette réduction s’obtient en dégénérant une surface
de Del Pezzo vers CP 2 éclaté en des points, dont sept se trouvent sur une conique lisse. Afin
d’optimiser l’énumération des courbes réelles, il est cependant plus adéquat de considérer un
raffinement de cette dégénérescence (voir la Remarque 4.18). Ce travail peut être vu comme une
généralisation aux (−3)-courbes de la formule d’Abramovich-Bertram-Vakil [AB01, Vak00a] et
de ses versions réelles présentées à la Section 4.1 (voir aussi le Théorème 4.36 appliqué avec
n = 3). Nous avons choisi ici de travailler dans la catégorie algébrique, et d’utiliser la formule
de dégénérescence de Li. On aurait cependant pu travailler dans le cadre symplectique.

À notre connaissance, les résultats présentés dans cette section fournissent le premier calcul
explicite des invariants de Gromov-Witten en tout genre des surfaces de Del Pezzo de degré 1
(voir [CH98, Vak00a, SS13] pour les autres surfaces de Del Pezzo). Un calcul relié des invari-
ants de Welschinger des surfaces de Del Pezzo de degré 2, pour des configurations composées
uniquement de points réels, a été indépendamment proposé dans [IKS13a].

(c) La formule d’Abramovich-Bertram-Vakil [AB01, Vak00a] relie les degrés de Severi des surfaces
de Hirzebruch Σ0 et Σ2. Nous étendons cette formule à la Section 4.3 au cas des surfaces de
Hirzebruch Σn et Σn+2. Notre stratégie généralise celle proposée dans [AB01], à savoir nous
dégénérons Σn vers Σn+2 et étudions le comportement des courbes énumérées durant cette
dégénérescence.

Les formules de dégénérescences actuellement disponibles ne s’appliquent à priori pas lorsque
n ≥ 2, celles-ci requérant alors de considérer des invariants de Gromov-Witten relatifs à un
diviseur singulier. Pour contourner cette difficulté, nous utilisons une approche tropicale. Dans
un premier temps, nous modélisons la déformation de Kodaira des surfaces de Hirzebruch par
une surface tropicale X dans R3. Puis nous transposons la stratégie d’Abramovich et Bertram
dans ce cadre tropical. Notre formule se déduit finalement d’un théorème de correspondance
reliant la géométrie énumérative de X avec celle des surfaces de Hirzebruch.

Les résultats présentés au Chapitre 4 rendent compte des travaux [BP14, Bru14, BM13].

• Nombres de Hurwitz et caractéristiques tropicaux (Chapitre 5)

Les nombres de Hurwitz comptent les revêtements ramifiés d’une surface fermée compacte S, avec
un ensemble donné de valeurs critiques et ayant des profils de ramification fixés. Les nombres

4
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caractéristiques de CP 2 comptent les courbes planes sujettes à des conditions d’incidence et de
tangence, et peuvent être vus comme une généralisation en dimension 2 des nombres de Hurwitz.
Rappelons que la technique de décomposition en étages, lorsque disponible, permet de calculer des
invariants énumératifs par récurrence sur la dimension de l’espace ambiant. En l’appliquant dans le
cas particulier des nombres caractéristiques, il est donc raisonnable d’espérer exprimer ces derniers en
fonctions des nombres de Hurwitz. À notre connaissance, il n’existe pas de formule de dégénérescence
algébrique ou symplectique permettant de contrôler les tangences avec des courbes s’intersectant les
unes les autres. La géométrie tropicale semble ainsi fournir le cadre le plus simple pour obtenir des
diagrammes en étage calculant les nombres caractéristiques de CP 2. Remarquons que les relations
que nous obtenons ne font pas seulement apparâıtre les nombres de Hurwitz fermés, mais aussi les
nombres de Hurwitz ouverts, dénombrant les surfaces possédant potentiellement un bord.

Nous introduisons les nombres de Hurwitz ouverts, et en proposons un calcul tropical à la Section 5.1.
Dans la Section 5.2.2, nous identifions les tangences entre courbes tropicales planes, et dégageons
un analogue tropical des nombres caractéristiques en genre 0 que nous relions ensuite à leur pen-
dant classique grâce à un théorème de correspondance adapté. Nous consacrons la Section 5.2.3 à
l’application de la technique de décomposition en étages développée au Chapitre 3. En particulier,
nous exprimons les nombres caractéristiques en genre 0 de CP 2 en termes des nombres de Hurwitz
ouverts de CP 1.

Les résultats présentés au Chapitre 5 rendent compte des travaux [BBM11, BBM14].

Nous présentons au Chapitre 6 un bref aperçu de quelques uns de nos autres travaux, sur les points
d’inflexions réels des courbes algébriques réelles [BLdM12, ABdLdM14], sur l’approximation des courbes
tropicales dans les surfaces tropicales non singulières [BS14], et sur l’approximation des morphismes tropi-
caux entre courbes tropicales [ABBR13a, ABBR13b]. Ces travaux sont moins directement reliés au thème
central de ce mémoire que le trois chapitres précédents. Nous avons néanmoins décidé de les présenter
ici car ils ont été partiellement motivés par le développement de la géométrie tropicale en vue de ses
applications en géométrie énumérative.

1.2 Take 2

The main problem addressed in this memoir is the enumeration of complex and real curves in a manifold X
subject to some incidence conditions with a configuration x of geometric constraints. We always implicitly
assume that the number and the dimensions of elements of x are chosen such that this number of curves
is expected to be finite. More specifically, we will be interested in the following ambient spaces4 X:

1. toric surfaces;

2. CP 2 blown up at points all located on a smooth conic;

3. Del Pezzo surfaces;

4. projective spaces;

5. rational symplectic 4-manifolds.

When counting complex curves, the answer only depends on the homology classes realized by the
constraints and the curves under enumeration, as well as on the genus of these latter. These numbers are
known as (relative) Gromov-Witten invariant of X. The invariance with respect to specific representatives
of elements of x can be established by reformulating the initial problem into the computation of an

4We fix the standard integrable complex structure in the first four cases, and let it vary in the last case.
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intersection number in certain canonically oriented moduli space. This latter observation, which can
be traced back at least to algebraic geometers of XIXth century, is the starting point for beautiful and
powerful developments in complex enumerative geometry based on intersection theory. The interested
reader will find in [Kle76, KV06] very nice introductions to the subject, see also [MS12].

As for the enumeration of real curves, a direct adaptation of this intersection theoretic approach raises
many complications compared to the complex situation. One of the reasons for that, not the least of
which, is that many moduli spaces in real geometry are not orientable. One can of course use homology
and intersection with coefficient in Z/2Z, however a naive application of this idea only leads to the
reduction modulo 2 of the corresponding Gromov-Witten invariants.

The answer to a real enumerative problem usually drastically depends on x, and on a potential choice
of an almost complex structure on X. Clearly, the number of real curves is bounded from above by the
number of complex curves, and these numbers are equal modulo two. However one can not say much
more in general... Nevertheless it has been observed for some time that stronger lower bounds exist in
real enumerative geometry, see for example Kharlamov’s computation [DK00, Proposition 4.7.3] from the
70’s, or Gabrielov and Eremenko’s work on real Schubert calculus [EG02].

In the case when X is a real symplectic 4-manifold, Welschinger provided in [Wel03, Wel05a] a way to
count real rational curves with a weight ±1, so that the weighted sum of real curves becomes indepen-
dent on x and on the choice of a generic compatible almost complex structure5 J on X. In particular,
these Welschinger invariants bound from below the number of real curves for any generic choice of x
and J , and provide an efficient way to tackle the problem of lower bounds in enumeration of real ra-
tional curves. Note that real enumerative invariants are related to open Gromov-Witten invariants, i.e.
the enumeration of Riemann surfaces with boundary. The breakthrough initiated by Welschinger lead
to the discovery of further invariants, mostly in the genus zero case, in real enumerative geometry (e.g.
[Wel05b, Wel07, Wel06, Wel11, Wel13, Sol06, PSW08, OT14, FK13, KR13, Geo13, Shu14]), and to the
development of methods to compute them (e.g. [Mik05, IKS03, IKS04, IKS09, IKS13c, IKS13b, IKS13a,
Wel07, PSW08, Teh13, HS12, KR13, GZ13, BM07, BM08, BMa, ABLdM11, BP14, Bru14]). Let us also
mention refined invariants of projective complex surfaces introduced by Göttsche and Shende in [GS12],
which are polynomials that conjecturally interpolate between Gromov-Witten and some Welschinger in-
variants.

It is interesting to remark that real enumerative invariants may also provide non-trivial upper bounds.
The first (and only) example we are aware of is Klein’s proof [Kle76] that at most one third of complex
inflections points of a smooth real plane projective curve can be real6, where this fact is deduced from
the invariance of a quantity involving the number of real inflection points and bitangents of the curve (see
also Section 6.1).

Despite the impressive recent progress made in the discovery of real enumerative invariants, only a
small proportion of complex enumerative invariants have a real analogue yet. As a consequence, adaptation
of methods from complex geometry based on intersection theory still remain a non-trivial task, since those
latter involve quite often complex invariants with no known real analogues.

Another possible approach to solve an enumerative problem is to construct configurations x for which
one can exhibit all solutions. Such configurations are called effective. The main advantage of effective
configurations is to provide simultaneous enumeration of both complex and real solutions, furthermore
without assuming any invariance with respect to x. This is particularly useful in real enumerative geometry
where, as mentioned above, invariants are lacking. Another nice property of effective configurations is
that, in addition to allowing computations of enumerative invariants, they often bring out some of their
qualitative properties. For example results about the sign of Welschinger invariants, their sharpness, their
arithmetical properties, their vanishing, and comparison of real and complex invariants have been obtained

5In the case of Del Pezzo surfaces, one can fix J to be the standard integrable complex structure on X.
6For quartic curves, this has the following abstract formulation : no more than 8 out of the 24 Weierstrass points of a

real algebraic non-hyperelliptic curve of genus 3 can be real.
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in this way in [IKS03, IKS04, IKS09, IKS13c, IKS13b, IKS13a, Wel07, Kol14, BM07, BM08, BP13a, BP14,
Bru14]. Let us also mention the sharpness results concerning real Schubert calculus [Sot97, EG02, Vak06]
and characteristic numbers [RTV97], as well as the construction of a Fock space formalism for Severi
degrees of CP 1 × CP 1 [CP12], obtained using effective configurations.

Among the available techniques to construct effective configurations, one can cite methods based on
Tropical geometry [Mik05], on Li’s degeneration formula [Li02, Li04] in the algebraic setting, on symplectic
sum formulas in the symplectic setting [IP04, LR01, TZ14], or more generally on symplectic field theory
[EGH00]. As a rough outline, these methods consist of degenerating the ambient space X in order to
reduce its enumerative geometry to the one of a (or several) union(s) ∪iYi of “simpler” spaces Yi. Note
that this reduction requires to consider Gromov-Witten invariants of the spaces Yi relative to the divisors
Ei,j = Yi ∩ Yj . In other words, one has to enumerate curves satisfying some incidence conditions and
intersecting the divisors Ei,j in some prescribed way. A very convenient feature of these degeneration
methods is that in nice cases, in particular when X has real dimension 4, deformations of a curve in ∪iYi
to a curve in X only depend on the intersections of the curve with the divisors Ei,j . As a consequence, if one
knows how to construct effective configurations in the spaces Yi, one can construct effective configurations
in X.

Using this general strategy, it nevertheless usually remains a non-trivial task to find a suitable degen-
eration of a particular variety X, from which one can deduce effective configurations in X. The objective
of this memoir is to illustrate a few methods to produce such useful degenerations, using the three above-
mentioned techniques. The framework and range of applications of these latter are different, and we
present various situations when the use of one of them seems preferable than the others. Nevertheless,
the choice of a particular technique remains certainly a matter of taste in a number of instances.

The main contributions presented in this typescript are grouped into three chapters:

• Enumeration of curves via floor diagrams (Chapter 3)

The floor decomposition technique has been elaborated in collaboration with Mikhalkin in [BM07,
BM08, BMa] and provides a method to construct effective configurations. In the case when X has
real dimension 4, the starting observation is that configurations containing at most two points in a
Hirzebruch surface (i.e. holomorphic CP 1-bundle over CP 1) are effective. Then the strategy is to
choose a suitable smooth rational curve E in X, to degenerate X into the union of X and a chain
of copies of the (compactified) normal bundle of E, and to choose a configuration of at most two
points in each of these copies. In nice situations, the union of all those points can be deformed into
an effective configuration x in X. When this is the case, all complex and real curves passing through
x can be encoded into purely combinatorial objects called floor diagrams. In higher dimensions,
floor diagrams encode recursively on the dimension of the ambient space how to construct effective
configurations x, and how to recover all curves constrainted by x.

We give in Section 3.1 a more detailed outline of this technique, together with its relation to Caporaso
and Harris approach (see [CH98, Vak00a, Vak00b, GM07a] in relation with this memoir). Next we
give three instances when the enumeration of algebraic curves can be reduced to the combinatorial
enumeration of floor diagrams:

(a) X is a toric surface, and E is a toric divisor satisfying some h-transversality condition;

(b) X is CP 2 blown up in n points located on a smooth conic, and E is the strict transform of the
conic;

(c) X = CPn, and E is a hyperplane.

We use tropical methods in cases (a) and (c), and Li’s degeneration formula in case (b). Note that
X may be singular in case (a), which makes worthwhile the use of tropical geometry. On the other
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hand, the situation in (b) is non-toric, which makes more adapted the use of algebraic or symplectic
degeneration formulas.

We conclude Chapter 3 by presenting several applications of floor diagrams: qualitative study of
Welschinger invariants, sharpness of upper bounds in real enumerative problems involving conics,
(piecewise-)polynomiality behavior of Gromov-Witten invariants.

Results presented in Chapter 3 are contained in [BM07, BM08, BMa, ABLdM11, BP13b, Bru14, AB].

• Three surface degenerations (Chapter 4)

We give three examples of applications of surface degenerations to enumerative geometry.

(a) We prove in Section 4.1 the vanishing of a large part of Welschinger invariants of symplectic
4-manifolds. We also relate Welschinger invariants of a given symplectic 4-manifolds equipped
with different real structures. Those results are obtained by degenerating a symplectic 4-
manifold to a nodal variety. To model this degeneration, we present the symplectic manifold
as the symplectic sum of itself with the (compactified) normal bundle of the corresponding real
Lagrangian vanishing cycle.

(b) In Section 4.2, we compute Gromov-Witten and Welschinger invariants of Del Pezzo surfaces
out of floor diagrams relative to a conic introduced in Section 3.2.2. In first approximation,
this reduction is obtained by degenerating a Del Pezzo surface to CP 2 blown up at points,
seven of them lying on a smooth conic. However, it is more suitable to consider a refinement
of this degeneration for the purpose of enumeration of real curves (see Remark 4.18). This
work can be seen as a generalization to (−3)-curves of Abramovich-Bertram-Vakil’s formula
[AB01, Vak00a] and its real versions from Section 4.1 (see also Theorem 4.36 applied with
n = 3). We chose in this section to work in the algebraic category, and to use Li’s degeneration
formula. Nevertheless one could also have used the symplectic framework.

To the best of my knowledge, results presented in this section provide the first explicit com-
putation of Gromov-Witten invariants in any genus of the Del Pezzo surface of degree 1 (see
[CH98, Vak00a, SS13] for similar computations in other Del Pezzo surfaces). An indepen-
dent but related computation of Welschinger invariants of Del Pezzo surface of degree 2, for
configuration of real points, have been proposed in [IKS13a].

(c) Abramovich-Bertram-Vakil’s formula [AB01, Vak00a] relates Severi degrees of the Hirzebruch
surfaces Σ0 and Σ2. We extend this formula in Section 4.3 to the Hirzebruch surfaces Σn and
Σn+2. Our strategy generalizes the one from [AB01], namely we degenerate Σn to Σn+2 and
study how curves under enumeration behave during this degeneration.

The currently available degeneration formulas do not apply when n ≥ 2, since it would require
to consider Gromov-Witten invariants of Hirzebruch surfaces relative to a singular divisor. To
avoid this difficulty, we use a tropical approach. First we model tropically Kodaira’s deformation
of Hirzebruch surfaces by some tropical surface X in R3. Then we transpose Abramovich and
Bertram strategy to this tropical setting. Finally we prove our formula thanks to a suitable
correspondence theorem relating enumerative geometry in X and in Hirzebruch surfaces.

Results presented in Chapter 4 are contained in [BP14, Bru14, BM13].

• Tropical Hurwitz and characteristic numbers (Chapter 5)

Hurwitz numbers count ramified coverings of a compact closed oriented surface S having a given
set of critical values with given ramification profiles. Characteristic numbers of CP 2 count plane
curves subject to some incidence and tangency conditions, and can be seen as a 2-dimensional
generalization of Hurwitz numbers. Recall that the floor decomposition technique, when available,
allows to compute enumerative invariants by induction of the dimension of the ambient space. Hence
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by applying it, one reasonably expects to obtain relations among Hurwitz and characteristic numbers.
However we are not aware of any symplectic nor algebraic degeneration formula that allows to keep
track of tangencies with curves intersecting each other, and tropical geometry seems to be the easiest
framework to get floor diagrams computing characteristic numbers. Note that the relation we obtain
involves not only closed Hurwitz numbers but also open ones, which enumerate surfaces possibly
with boundary.

We introduce open Hurwitz numbers, and compute them tropically in Section 5.1. In Section 5.2.2,
we identify tropical tangencies between plane tropical curves, and we define tropical analogues of
characteristic numbers in genus 0 that we relate to their classical counterpart thanks to suitable
correspondence theorem. Section 5.2.3 is devoted to the application of the floor decomposition
technique developed in Chapter 3. In particular we express genus 0 characteristic numbers of CP 2

in terms of open Hurwitz numbers of CP 1.

Results presented in Chapter 5 are contained in [BBM11, BBM14].

We present in Chapter 6 a brief overview of some other of our works, on real inflection points of
real algebraic curves [BLdM12, ABdLdM14], on the approximation of tropical curves in tropical surfaces
[BS14], and on the approximation of tropical morphisms between tropical curves [ABBR13a, ABBR13b].
These works are less directly related to the central theme of this memoir than the three above chapters.
Since they were partly motivated by the development of tropical geometry with a view towards applications
to enumerative geometry, we decided nevertheless to give a short presentation at the end of this memoir.
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[BM08] E. Brugallé and G. Mikhalkin. Floor decompositions of tropical curves : the planar case.
Proceedings of 15th Gökova Geometry-Topology Conference, pages 64–90, 2008.
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[BS14] E. Brugallé and K. Shaw. Obstructions to approximating tropical curves in surfaces via
intersection theory. To appear in Canadian Journal of Mathematics, 2014.

12



Chapter 2

Preliminary definitions

In this chapter we fix notations and definitions that we use throughout the text.

2.1 Notations and conventions

1. Real varieties. A real algebraic manifold XR = (X, τ) is a complex algebraic manifold X equipped
with an antiholomorphic involution τ . Complex projective spaces are always considered equipped
with their standard real structure given by the complex conjugation.

A real symplectic manifold XR = (X,ω, τ) is a symplectic manifold (X,ω) equipped an antisym-
plectic involution τ . We say that an almost complex structure J tamed by ω is τ -compatible if τ is
J-antiholomorphic, i.e. J ◦ dτ = −dτ ◦ J .

In both cases, the real part of XR, denoted by RX, is by definition the fixed point set of τ .

2. The connected sum of 1 + k copies of RP 2 is denoted by RP 2
k .

3. The normal bundle of a submanifold E of a manifold X is denoted by NE/X .

4. Graphs. Given a finite graph Γ (i.e. Γ has a finite number of edges and vertices) we denote by
Vert(Γ) the set of its vertices, and by Edge(Γ) the set of its edges. By definition, the valency of a
vertex v ∈ Vert(Γ), denoted by val(v), is the number of edges in Edge(Γ) adjacent to v.

A weighted graph is a graph Γ equipped with a function w : Edge(Γ)→ Z>0. The weight allows one
to define the divergence at the vertices of an oriented graph. Namely, for a vertex v ∈ V ert(Γ) we
define the divergence div(v) to be the sum of the weights of all incoming edges minus the sum of the
weights of all outgoing edges.

5. Given a ∈ Z and {ai}i∈I a finite set of integer numbers, we define the multinomial coefficient(
a

{ai}i∈I

)
=

a!(
a−

∑
i∈I ai

)
!
∏
i∈I ai!

.

If I = {1, . . . , k}, we also use the notation

(
a

a1, . . . , ak

)
.
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Recall also that (2k)!! = (2k − 1)(2k − 3) . . . 1.

6. Given a vector α = (αi)i≥1 ∈ Z∞≥0, we use the notation

|α| =
∞∑
i=1

αi, Iα =

∞∑
i=1

iαi, and Iα =

∞∏
i=1

iαi .

The vector α is said to be odd if α2i = 0 for all i ≥ 1. Given two vectors α and β in Z∞≥0, we write
α ≥ β if αi ≥ βi for all i. The vector in Z∞≥0 whose all coordinates are equal to 0, except the ith one
which is equal to 1, is denoted by ui.

If α, α1, . . . , αl are vectors in Z∞≥0, then we set(
α

α1, . . . , αl

)
=

∞∏
i=1

(
αi

(α1)i, . . . , (αl)i

)
.

2.2 Welschinger invariants of real symplectic 4-manifolds

Let XR = (X,ω, τ) be a real symplectic manifold of dimension 4. Let C be an immersed real rational
J-holomorphic curve in X for some τ -compatible almost complex structure J , and denote by L the

connected component of RX containing the 1-dimensional part R̃C of RC. Fix also a τ -invariant class F

in H2(X \ L;Z/2Z). Any half of C \ R̃C defines a class C in H2(X,L;Z/2Z) whose intersection number
modulo 2 with F , denoted by C · F , is well defined and does not depend on the chosen half. We further
denote by m(C) the number of nodes of C in L with two τ -conjugated branches, and we define the F -mass
of C as

mF (C) = m(C) + C · F.
Choose a connected component L of RX, a class d ∈ H2(X;Z), and r, s ∈ Z≥0 such that

c1(X) · d− 1 = r + 2s.

Choose a configuration x made of r points in L and s pairs of τ -conjugated points in X \ RX. Given a
τ -compatible almost complex structure J , we denote by C(d, x, J) the set of real rational J-holomorphic

curves C in X realizing the class d, passing through x, and such that L contains R̃C.
The following theorem constituted a breakthrough in real enumerative geometry.

Theorem 2.1 (Welschinger, [Wel05a, IKS13b]) For a generic choice of J , the set C(d, x, J) is finite,
and the integer

WXR,L,F (d, s) =
∑

C∈C(d,x,J)

(−1)mF (C)

depends neither on x, J , nor on the deformation class of XR

We call these numbers the Welschinger invariants of XR. When F = [RX\L], we simply write WXR,L(d, s)
instead of WXR,L,[RX\L](d, s). If RX is connected, we further write WXR(d, s) instead of WXR,L(d, s). Note
that Welschinger invariants are non-trivial to compute only in the case of rational manifolds.

Remark 2.2 Welschinger originally considered in [Wel05a] only the case when F = [RX \ L]. In this
case mF (C) is the number of solitary nodes of RC. Later, Itenberg, Kharlamov, and Shustin observed in
[IKS13b] that Welschinger’s proof extends literally to arbitrary τ -invariant classes in H2(X \ L;Z/2Z).
See also [Geo13] for a related discussion.
Note that our convention differs from [IKS13b], where the sign of a curve in C(d, x, J) depends on the
parity of m(C) + C · (F + [RX \ L]) instead of m(C) + C · (F ).

Among the results presented in this memoir, we prove that WXR,L,F (d, s) vanishes for many choices of
F , and we compute Welschinger invariants of several Del Pezzo surfaces.
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2.3 Tropical curves

We use tropical methods at several places in the text. Since many definitions in tropical geometry differ
from an author to another, we fix here the definitions of tropical curves and morphisms we use in this
typescript. We also illustrate applications of tropical geometry to enumerative geometry with Mikhalkin’s
seminal Correspondence Theorem.

2.3.1 Abstract tropical curves

In this memoir, we identify a graph and any of its topological realization. A metric graph is the data of
a graph C equipped with a complete metric on

C \Vert∞(C),

where Vert∞(C) is a subset of 1-valent vertices of C. In particular, vertices in Vert∞(C) are at the infinite
distance from all the other points of C. Next definition is essentially [BBM11, Definition 2.1]. Tropical
curves with boundary will be needed in Chapter 5.

Definition 2.3 A tropical curve C with boundary is a metric graph equipped with a map

Vert(C) \ {1− valent vertices of C} −→ Z≥0

v 7−→ gv

such that any 2-valent vertex v of C satisfies gv ≥ 1. A 1-valent vertex of C not in Vert∞(C) is called a
boundary component of C.

The tropical curve C is said to be irreducible if it is connected. The Euler characteristic of C is

χtrop(C) = b0(C)− b1(C)−
∑

gv

where bi(C) is the ith Betti number of C. The genus of C with no boundary component is defined to be

g(C) = 1− χtrop(C).

The integer gv is called the genus of v. The tropical curve C is explicit if gv is identically 0.

Our definition of tropical curves with boundary extends the definition of tropical curves with stops intro-
duced by Nishinou in [Nis12]. We denote by ∂C the set of boundary components of C, and by Edge∞(C)
the set of edges adjacent to a vertex in Vert∞(C). A tropical curve C is said to be closed if ∂C = ∅.

Two tropical curves C1 and C2 are said to be isomorphic if there exists an isometry φ : C1 → C2 such
that gφ(v) = gv for any k-valent vertex of C with k ≥ 2.

A punctured tropical curve C ′ is given by C \ P where C is a tropical curve, and P is a subset of
Vert∞(C). Note that C ′ has a tropical structure inherited from C. We set Edge∞(C ′) = Edge∞(C).
We define the genus of a punctured tropical curve C ′ without boundary as g(C ′) = g(C) and its Euler
characteristics as

χtrop(C ′) = χtrop(C)− |P|.

2.3.2 Tropical morphisms

Given e an edge of a tropical curve C, we choose a point p in the interior of e and a unit vector ue of the
tangent line to C at p (recall that C is equipped with a metric). Of course, the vector ue depends on the
choice of p and is well-defined only up to multiplication by -1, but this will not matter in the following.
In cases we will need ue to have a prescribed direction, we will then specify this direction. The standard
inclusion of Zn in Rn induces a standard inclusion of Zn in the tangent space of Rn at any point of Rn.
A vector in Zn is said to be primitive if the greatest common divisor of its coordinates equals 1.
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Definition 2.4 Let C be a punctured tropical curve. A continuous map f : C → Rn is a tropical
morphism if

• for any edge e of C, the restriction f|e is a smooth map with df(ue) = wf,euf,e where uf,e ∈ Zn is a
primitive vector, and wf,e is a positive integer;

• for any vertex v in Vert(C) whose adjacent edges are e1, . . . , ek with k ≥ 2, one has the balancing
condition

k∑
i=1

wf,eiuf,ei = 0

where uf,ei is chosen so that it points away from v.

The integer wf,e is called the weight of the edge e with respect to f . When no confusion is possible, we
simply speak about the weight of an edge, without referring to the morphism f . Note that a morphism f
is proper and Vert∞(C) = ∅. The morphism f is called an immersion if it is a topological immersion, i.e.
if f is a local homeomorphism on its image.

Remark 2.5 Definition 2.4 is a simplify and rather coarse definition of a tropical morphism, in particular
because one should allow edges to have weight 0. We made this simplification for the sake of shortness,
since in all tropical enumerative problems considered in this typescript, only tropical morphisms with
positive weights finally appear as solutions.

More important, one can easily construct tropical morphisms from a positive genus tropical curve which
are superabundant, i.e. whose space of deformation has a strictly bigger dimension that the expected one
(see [Mik05, Section 2]). In particular, when the corresponding situation in classical geometry is regular
(i.e. with no superabundancy phenomenon) as in the case of reduced projective plane curves, such a
superabundant tropical morphism is unlikely to be presented as the tropical limit of a family of holomorphic
maps (see for example [Mik06, Section 6] or [BBM14, Section 6] for the definition of a tropical limit).
One may refine Definition 2.4, still using pure combinatoric, to get rid of many of these superabundant
tropical morphisms, see Section 6.2.

Definition 2.4 will be extended to morphisms between any tropical curves in Definition 5.4.

2

Figure 2.1: Example of a morphism: a plane conic

Example 2.6 In Figure 2.1 we depicted a plane conic, which is the image in R2 of a morphism from a
trivalent punctured curve with four vertices. We label the image of an edge with the corresponding weight
if it exceed 1. This allows us to omit the source of the morphism which is then implicit.
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Two tropical morphisms f1 : C1 → Rn and f2 : C2 → Rn are said to be isomorphic if there exists a
tropical isomorphism φ : C1 → C2 such that f1 = f2 ◦ φ. In this text, we consider tropical morphisms up
to isomorphism.

Given a closed tropical morphism f : C → Rn, we define its degree and its Newton fan.
The degree of f is defined as

d =
∑

e∈Vert∞(C)

wf,e maxnj=1{0, uf,e,j}, (2.1)

where uf,e = (uf,e,j)
n
j=1 is oriented in the unbounded direction of e. Note that if f has degree d, then

Edge∞(C) contains at most (n+ 1)d edges. If equality holds f is said to be generic at infinity.
The multiset δ(f) = {uf,e}e∈Vert∞(C) is called the Newton fan of f . We use the notation

δ(f) = {vm1
1 , . . . , vmkk }

to indicate that the vector vi appears mi times in δ. Thanks to the balancing condition, we have∑
u∈δ(f)

u = 0.

In particular, this implies that any Newton fan δ of vectors in Z2 has a unique (up to translation) dual
polygon Πδ in R2. We call Πδ the Newton polygon of f .

To any complex algebraic curve C in (C∗)n, we may associate its Newton fan δC as follows: consider
the toric compactification Tor(ΠC) of (C∗)n given by a polytope ΠC such that C does not intersect any
boundary components of Tor(ΠC) of codimension two or more. Then each puncture p of C corresponds
to a facet γ of ΠC . We associate to p the element wpvp where vp is the primitive normal vector to γ
oriented outward ΠC , and wp is the order of contact at p of C with the toric divisor corresponding to γ
in the toric variety Tor(ΠC). The choice of ΠC is clearly not unique however δC does not depend on this
choice. Note that if n = 2, a canonical choice for ΠC is of course ΠδC .

2.3.3 An example of Correspondence Theorem

Here we illustrate the use of tropical geometry in complex and real geometry by giving Mikhalkin’s orig-
inal Correspondence Theorem [Mik05] to enumerate curves in toric surfaces. This Theorem constitutes
a cornerstone of tremendous developments in tropical and enumerative geometry during the last decade
(e.g. [GM07b, NS06, CJM11, Tyo12, IM13, GS14]). We present two generalizations of Mikhalkin’s Cor-
respondence Theorem in this memoir.

A lattice polygon ∆ is a convex polygon in R2 whose vertices are in Z2. We denote by ∆d the lattice
polygon with vertices (0, 0), (d, 0), and (0, d).

Recall that a lattice polygon ∆ defines a complex toric surface Tor(∆) equipped with a polarization
d∆ ∈ H2(Tor(∆);Z). Note that Tor(∆) is naturally equipped with a real structure induced by the complex
conjugation on (C∗)2. We denote by TorR(∆) the corresponding real algebraic surface. We define N(∆, g)
to be the number of irreducible complex algebraic curves in Tor(∆) of genus g, realizing the class d∆,
and passing through a generic configuration of ℵ∆,g = |∂∆ ∩ Z2|+ g − 1 points in Tor(∆). Equivalently,
N(∆, g) is the number of complex algebraic curves of genus g in (C∗)2, with Newton polygon ∆, and
passing through a generic configuration of ℵ∆,g points in (C∗)2. These numbers are known as (irreducible)
Severi degrees of the surface Tor(∆). When Tor(∆) is a Del Pezzo surface, the number N(∆, g) is a
Gromov-Witten invariants of Tor(∆).

Mikhalkin’s Correspondence Theorem reduces the enumeration of complex and real curves in Tor(∆)
to the enumeration of tropical curves in R2. For the sake of shortness, we only explain here how to
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compute Welschinger invariants of real Del Pezzo toric surfaces when x does not contain any pairs of
complex conjugated points. We refer to [Shu06] for a tropical computations of Welschinger invariants
of real Del Pezzo toric surfaces for any real configurations x. See also [BM08, Section 4] for another
presentation.

Choose a lattice polygon ∆ in R2, an integer g ≥ 0, and a configuration x of ℵ∆,g points in R2. We
denote by TC(∆, g, x) the set of irreducible closed tropical morphisms f : C → R2 of genus g, Newton
polygon ∆, and such that x ⊂ f(C).

Proposition 2.7 (Mikhalkin, [Mik05]) For a generic configuration x, the set TC(∆, g, x) is finite.
Moreover any element f : C → R2 of TC(∆, g, x) is an immersion, generic at infinity, from a trivalent
tropical curve

Choose a generic configuration x, and an element f : C → R2 of TC(∆, g, x). Let v ∈ Vert(C) and e1

and e2 be two of its adjacent edges. We define the following numbers

µC(v) = wf,e1wf,e2 |det(uf,e1 , uf,e2)|, and µR(v) =

 0 if µC(v) = 0 mod 2
1 if µC(v) = 1 mod 4
−1 if µC(v) = 3 mod 4

.

As v is trivalent, the balancing condition implies that these two numbers do not depend on the choice of
e1 and e2.

Definition 2.8 The complex and real multiplicities of f : C → R2 are respectively defined as

µC(f) =
∏

v∈Vert(C)

µC(v) and µR(f) =
∏

v∈Vert(C)

µR(v).

Enumerations of algebraic and tropical curves are related by the following fundamental theorem.

Theorem 2.9 (Mikhalkin’s Correspondence Theorem, [Mik05]) For any lattice polygon ∆, any
genus g, and any generic configuration x of ℵ∆,g points in R2, one has

N(∆, g) =
∑

f∈TC(∆,g,x)

µC(f).

If in addition the surface Tor(∆) is Del Pezzo and g = 0, then one has

WTorR(∆)(d∆, 0) =
∑

f∈TC(∆,g,x)

µR(f).

Historically, Theorem 2.9 provided the first systematic computations of Welschinger invariants, and has
been generalized in [Shu06] to compute all Welschinger invariants of real Del Pezzo toric surfaces. There
also exist generalizations of Theorem 2.9 to enumerate rational curves in higher dimensional spaces [NS06,
Mik, BMa]. Note that it follows from Theorem 2.9 that the right-hand side of the two above identities
do not depend on x. A direct proof of this fact (i.e. not using Theorem 2.9) has been given in [GM07b]
and [IKS09]. These proofs have been extended in [IM13] to prove the existence of tropical refined Severi
invariants of tropical toric surfaces, in relation with refined Severi degrees introduced in [GS12].

Example 2.10 All irreducible tropical curves of genus 0 and Newton polygon ∆3 in TC(∆, g, x) for the
configuration x of 8 points depicted in Figure 2.2a are depicted in Figure 2.2b, . . ., j. We verify that

N(∆3, 0) = 12 and WRP 2(3, 0) = 8.
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2

a) b) µC = 4 c) µC = 1 d) µC = 1 e) µC = 1 f) µC = 1
µR = 0 µR = 1 µR = 1 µR = 1 µR = 1

g) µC = 1 h) µC = 1 i) µC = 1 j) µC = 1
µR = 0 µR = 1 µR = 1 µR = 1

Figure 2.2: N(∆3, 0) = 12 and WRP 2(3, 0) = 8.
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The proof of Theorem 2.9 goes by constructing effective configurations x′ of points in (R∗)2 out of a
tropical configuration x of points in R2. In particular it implies the following proposition, which will be
used in Section 3.3.3. Given an integer a, we denote by [a]2 its value modulo 2.

Proposition 2.11 (Mikhalkin, [Mik05]) If x is generic, then there exists a generic configuration x′ of
ℵ∆,g points in (R∗)2 such that at least ∑

f∈TC(∆,g,x)

[µC(f)]2

real algebraic curves in (C∗)2 of genus g and Newton polygon ∆ pass through x′.

2.4 Hirzebruch surfaces

Given n ≥ 0, we denote by Σn the nth Hirzebruch surface, i.e. Σn = P(OCP 1(n) ⊕ C). The group
H2(Σn;Z) is the free abelian group generated by the classes of a section B of OCP 1(n) and a fiber F .
An algebraic curve in Σn is said to be of bidegree (a, b) if it realizes the homology class a[B] + b[F ] in
H2(Σn;Z).

The surface Σn is the projective toric surface defined by the polygon with vertices (0, 0), (0, 1), (1, 1),
and (n+ 1, 0). In particular it is obtained by taking two copies of C×CP 1 glued by the biholomorphism

C∗ × CP 1 −→ C∗ × CP 1

(x1, y1) 7−→ ( 1
x1
, y1

zn1
)

The coordinate system (x1, y1) in the first chart is called standard. An algebraic curve of bidegree (a, b)
in Σn is defined in a standard coordinate system by a polynomial with Newton polygon contained in the
trapeze with vertices (0, 0), (0, a), (b, a), and (an+ b, 0), with equality for a generic curve when a, b ≥ 0.
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Chapter 3

Enumeration of curves via floor
diagrams

In this chapter we present the main ideas underlying the floor decomposition technique, and implement
this strategy in three cases: for toric surfaces together with a toric divisor, for CP 2 blown up at n point
on a conic together with this conic, and for projective spaces together with a hyperplane. We end this
chapter with a few examples of application of floor diagrams. In particular, we illustrate with conics that
it provides an efficient tool in the study of maximality of real enumerative problems.

We will present in Chapter 5 another application of floor decompositions, relating characteristic num-
bers of CP 2 to open Hurwitz numbers of CP 1. This requires much more preliminary work than in the
three cases presented here, and will require the whole Chapter 5.

3.1 Basic strategy, relations with Caporaso-Harris approach

We start by giving the general ideas underlying the floor decomposition technique. For the sake of
simplicity, we restrict to the problem of counting curves of a given genus, realizing a given homology
class in H2(X;Z), and passing through a generic configuration x of points on a (maybe singular) complex
algebraic surface X (the cardinality of x being such that the number of curves is expected to be finite).
All ideas developed here have a natural generalization in higher dimensions, at the cost of much heavier
notations. We refer to Section 3.2.3 for the case of projective spaces, and to Section 5.2.3 for the case of
characteristic numbers of CP 2. The floor decomposition technique is related to the approach proposed by
Caporaso and Harris in [CH98] to compute Gromov-Witten invariants of CP 2, and it is natural to start
with an outline of this latter.

The paradigm underlying a Caporaso-Harris type formula is the following. Choose a suitable irreducible
curve E in X, and specialize points in x one after the other to E. After the specialization of sufficiently
many points, one expects that curves under consideration degenerate into reducible curves having E as
a component. By forgetting this component, one is reduced to an enumerative problem in X concerning
curves realizing a “smaller” homology class. With a certain amount of optimism, one can then hope to
solve the initial problem by induction.
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This method has been first proposed and successfully applied by Caporaso and Harris [CH98] in the case
of CP 2 together with a line, and has been since then applied in several other situations. Directly related
to this text, one can cite the work of Vakil [Vak00a, Vak00b] and the generalization of [Vak00a] by Shoval
and Shustin [SS13] As a very nice fact, it turns out that this approach also provides a way to compute
certain Welschinger invariants for configuration x only composed of real points [IKS13c, IKS13b, IKS13a].

When both X and E are smooth, Ionel and Parker observed in [IP98, Section 5] that the method
proposed by Caporaso and Harris could be interpreted in terms of degeneration of the target space X. We
present below the algebro-geometric version of this interpretation [Li04, Section 11]. The ideas underlying
symplectic interpretation are similar, however the two formalisms are quite different. We particularly refer
to [Li04] for an introduction to this degeneration technique in enumerative geometry. Given X and E as
above, denote by NE = P(NE/X ⊕ C), and do the following:

1. degenerate X into a reducible surface Y = X ∪ NE , and specialize exactly one point of x to NE
during this degeneration;

2. determine all possible degenerations in Y of the enumerated curves;

3. for each such limit curve in Y , compute the number of curves of which it is the limit.

This method produces recursive formulas à la Caporaso-Harris if all limit curves in Y can be recovered
by solving separate enumerative problems in its components X and NE .

The basic idea of floor diagrams is to get rid of any recursion, which implicitly refers to some invariance
property of the enumerative problem under consideration. To do so, one considers a single degeneration
of X into the union Ymax of X and a chain of copies of NE , and specializes exactly one element of x to
each copy of NE . Floor diagrams then correspond to dual graphs of the limit curves in Ymax, and the
way they meet the points in x is encoded in a marking. In good situations, all limit curves in Ymax can
be completely recovered only from the combinatoric of marked floor diagrams. In particular, effective
configurations in X can be deduced from effective configurations in NE .

This method have been first successfully applied in collaboration with Mikhalkin in [BM07, BM08,
BMa], in the case when X is a toric surface and E is a toric divisor satisfying some h-transversality
condition, or in higher dimension when X is a projective space and E is a hyperplane. We used methods
from tropical geometry, which in particular allowed us to get rid of the smoothness assumption on X
required in algebraic and symplectic degeneration formulas currently available. Note that when both floor
diagrams and Caporaso-Harris type formulas are available, it follows from the above description that these
two methods provide two different, although equivalent, ways of clustering curves under enumeration.
Passing from one presentation to the other does not present any difficulty other than technical, see
[ABLdM11] or Section 3.3.2.

When both X and E are chosen to be real, floor diagrams can also be adapted to enumerate real
curves passing through a real configuration of r real points and s pairs of complex conjugated points:

(1’) degenerate X to the union Y ′max of X and a chain of r + s copies of NE , specializing exactly one
real point or one pair of complex conjugated points of x to each copy of NE ;

(2’) determine real curves in step (2) above;

(3’) adapt computations of step (3) above to determine real curves converging to a given real limit curve.

As in the complex situation, one can associate floor diagrams to real limit curves in Y ′max, each of them
being now naturally equipped with an involution induced by the real structure of X. Again, in several
situations all necessary informations about enumeration of real curves in Y ′max are encoded by the combi-
natoric of these real marked floor diagrams. This is in particular the case in the three situations presented
in Section 3.2.
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This reduction of an algebraic problem to a purely combinatorial question might not seem so surprising
when all points in x are real, since then the situation is similar to the complex one. However in the presence
of complex conjugated points, we are still puzzled by the many cancellations that allow this reduction.

The floor diagram technique clearly takes advantage over the Caporaso-Harris method when one wants
to count real curves satisfying incidence conditions with general real configuration x. In the enumeration
of complex curves, or of real curves when elements of x are all real, the use of any of these two methods is
certainly a matter of taste. From our own experience, we could notice that floor diagrams provide a more
geometrical picture of curve degenerations which helps sometimes to minimize mistakes in practical com-
putations. Finally, it is worth stressing that floor diagrams also led to the discovery of new phenomenons
also in complex enumerative geometry, for example concerning the (piecewise-)polynomial behavior of
relative Gromov-Witten invariants of complex surfaces, e.g. [FM10, Blo11, AB13, LO14, AB], see also
Section 3.3.4.

3.2 Three implementations of the floor decomposition technique

We first give some definitions common to all sections of this chapter.

Definition 3.1 A floor diagram of genus g consists in the data of an acyclic (i.e. without any non-
trivial oriented cycle) connected oriented graph D, with first Betti number equal to g, equipped with two
disjoint subsets Vert+∞(D) and Vert−∞(D) of leaves of D, and a map w : Edge(Γ) → Z>0, such that
div(Vert−∞(Γ)) ⊂ Z<0 and div(Vert+∞(Γ)) ⊂ Z>0.

A vertex v ∈ Vert(Γ) \Vert±∞(Γ) is called a floor of D.

A floor diagram is said to be simple if |w(e)| = 1 for all edge e adjacent to a leaf in Vert±∞(Γ).

We denote by Vert◦(D) the set of floors of D, and by Edge±∞(Γ) the set of edges adjacent to a leaf in
Vert±∞(Γ). We provide many examples of floor diagrams in this chapter, and here are the convention we

use to depict them : floors are represented by white ellipses; vertices in Vert±∞(D) are not depicted; edges
of D are represented by vertical lines, and the orientation is implicitly from down to up. We specify the
weight of an edge only if this latter is at least 2.

Definition 3.2 An isomorphism of floor diagrams is a graph isomorphism φ : D → D′ such that w = w′◦φ
and φ

(
Vert±∞(D)

)
= Vert±∞(D′).

Floor diagrams will be mostly considered together with a marking, which is an increasing map m :
P → D from some partially ordered set P. Note that a floor diagram inherits a partial ordering from the
orientation of its underlying graph, and that a map m between two partially ordered sets is said to be
increasing if

m(i) > m(j) =⇒ i > j.

3.2.1 Floor diagrams for curves in toric surfaces

In this section we compute complex and real invariants of Tor(∆) via floor diagrams, for a suitable class
of polygons ∆. Methods presented in this section have recently been used in [BG14] to compute tropical
refined Severi degrees of some tropical toric surfaces. It particular, Block and Göttsche proved that these
latter indeed interpolate between Severi degrees and Tropical Welschinger invariants (see [IKS09] for a
definition) as conjectured in [GS12].
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3.2.1.1 Planar floor diagrams and their markings

Given ∆ a lattice polygon in R2, we define

∂l∆ = {p ∈ ∂∆ | ∀t > 0, p+ (−t, 0) /∈ ∆},

∂r∆ = {p ∈ ∂∆ | ∀t > 0, p+ (t, 0) /∈ ∆}.

A lattice polygon ∆ is said to be h-transverse if any primitive vector parallel to an edge of ∂l∆ or ∂r∆
is of the form (α,±1) with α in Z. In this case, we define the left directions (resp. right directions) of ∆,
denoted by dl(∆) (resp. dr(∆)), as the unordered list that consists of the elements α repeated l(e) times
for all edge vectors e = ±l(e)(α,−1) of ∂l∆ (resp. ∂r∆). If ∆ has a bottom (resp. top) horizontal edge e
then we set d−(∆) = l(e) (resp. d+(∆) = l(e)) and d−(∆) = 0 (resp. d+(∆) = 0) otherwise. We call the
cardinality |dl(∆)| the height of ∆.

Example 3.3 Some h-transverse polygons are depicted in Figure 3.1. By abuse of notation, we write
unordered lists within brackets {}.

a) dl = {0, 0, 0}
dr = {1, 1, 1}
d− = 3
d+ = 0

b) dl = {0, 0}
dr = {1, 1}
d− = 3
d+ = 1

c) dl = {0, 0}
dr = {2, 2}
d− = 5
d+ = 1

d) dl = {1, 0, 0,−2}
dr = {−1,−1, 0, 1}
d− = 0
d+ = 0

Figure 3.1: Examples of h-transverse polygons

Remark 3.4 If ∆ is a lattice polygon in R2 and if v is a primitive integer vector such that for any edge
e of ∆ we have |det(v, e)| ≤ l(e), then ∆ is a h-transverse polygon after a suitable change of coordinates
in SL2(Z).

Definition 3.5 Let ∆ be an h-transverse lattice polygon. A simple planar floor diagram with Newton
polygon ∆ is the data of a simple floor diagram D equipped with a map θ : Vert(D)→ Z which satisfy the
following conditions:

• there are exactly d±(∆) edges in Edge±∞(D);

• the (unordered) collection of numbers θ(v), where v goes through vertices of D, coincides with dl(∆);

• the (unordered) collection of numbers θ(v) + div(v), where v goes through vertices of D, coincides
with dr(∆).

Example 3.6 Figure 3.2 depicts an example of simple planar floor diagram for each h-transverse polygon
depicted in Figure 3.1. We precise θ(v) inside the ellipse representing v only if θ(v) 6= 0.

Example 3.7 We depicts in Figure 3.3 all simple floor diagrams with Newton polygon ∆4.
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a) g = 0 b) g = 1 c) g = 0 d) g = 2

Figure 3.2: Examples of simple planar floor diagrams whose Newton polygon are depicted in Figure 3.1
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Figure 3.3: Simple floor diagrams with Newton polygon ∆4

Recall that we have defined ℵ∆,g = |∂∆∩Z2|+ g− 1 in Section 2.3.3. Euler’s formula implies that for
any simple floor diagram D of genus g with Newton polygon ∆, we have

|Vert◦(D)|+ |Edge(D)| = ℵ∆,g.

Definition 3.8 A marking of a simple planar floor diagram D of genus g with Newton polygon ∆ is an
increasing bijection m : {1, . . . ,ℵ∆,g} → D \Vert±∞(D).

A planar floor diagram enhanced with a marking is called a marked planar floor diagram and is said
to be marked by m.

Definition 3.9 Two marked planar floor diagrams (D,m) and (D′,m′) are called equivalent if there exists
an isomorphism of floor diagrams φ : D → D′ such that θ = θ′ ◦ φ, and m = m′ ◦ φ.

From now on, we consider marked planar floor diagrams up to equivalence. To any (equivalence class
of) marked planar floor diagram, we assign a sequence of non-negative integers called multiplicities : a
complex multiplicity, and some r-real multiplicities.
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3.2.1.2 Enumeration of complex curves

Definition 3.10 The complex multiplicity of a simple marked planar floor diagram (D,m), denoted by
µC(D,m), is defined as

µC(D,m) =
∏

e∈Edge(D)

w(e)2

Note that the complex multiplicity of a marked planar floor diagram depends only on the underlying floor
diagram. The numbers N(∆, g) introduced in Section 2.3.3 can be computed only using of marked floor
diagrams thanks to next theorem.

Theorem 3.11 ([BM08, Theorem 3.6]) For any h-transverse polygon ∆ and any genus g, one has

N(∆, g) =
∑

µC(D,m)

where the sum is taken over all marked simple floor diagrams of genus g and Newton polygon ∆.

Example 3.12 Using floor diagrams depicted in Figures 3.4 and 3.3, we verify that

N(∆3, 1) = 1, and N(∆3, 0) = 12 (see Figure 3.4).

N(∆, 0) = 93, where ∆ is the polygon depicted in Figure 3.1c.

N(∆4, 3) = 1, N(∆4, 2) = 27, N(∆4, 1) = 225, and N(∆4, 0) = 640, (see Figure 3.3).

2

a) µC = 1, 1 marking b) µC = 4, 1 marking c) µC = 1, 5 markings d) µC = 1, 3 markings

Figure 3.4: Simple floor diagrams of genus 1 and 0, with Newton polygon ∆3

3.2.1.3 Enumeration of real curves

Let us now turn to the enumeration of real curves via floor diagrams. First of all, we have to define the
notion of real marked floor diagrams. Choose two integers r, s ≥ 0 such that ℵ∆,0 = r+ 2s, and D a floor
diagram of genus 0 and Newton polygon ∆, marked by a map m.

The set {i, i+ 1} is a called s-pair if i = ℵ∆,0− 2k+ 1 with 1 ≤ k ≤ s. Denote by =(m, s) the union of
all the s-pairs {i, i+ 1} where m(i) is not adjacent to m(i+ 1). Let ρs : {1, . . . ,ℵ∆,0} → {1, . . . ,ℵ∆,0} be
the bijection defined by ρs(i) = i if i /∈ =(m, s), and by ρs(i) = j if {i, j} is a s-pair contained in =(m, s).
Note that ρs is an involution, and that ρ0 = Id.

We define os to be half of the number of vertices v of D in m(=(m, s)) with odd divergence, and we
set A = Edge(D) ∩m({r + 1, . . . ,ℵ∆,0}).
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Definition 3.13 A simple marked planar floor diagram (D,m) is called s-real if the two marked floor
diagrams (D,m) and (D,m ◦ ρs) are equivalent.

The s-real multiplicity of a s-real marked floor diagram, denoted by µR
s (D,m), is defined as

µR
s (D,m) = (−1)os

∏
e∈A

w(e)

if all edges of D of even weight are contained in m(=(m, s)), and as

µR
s (D,m) = 0

otherwise.

Note that µR
0 (D,m) = 1 or 0 and is equal to µC(D,m) modulo 2, and hence does not depend on m.

However, µR
s (D,m) depends on m as soon as s ≥ 1. Next theorem is the second main result of this section.

Theorem 3.14 ([BM08, Theorem 3.9]) Let ∆ be a h-transverse polygon such Tor(∆) is a Del Pezzo
surface. Then for any two integers r, s ≥ 0 such that ℵ∆,0 = r + 2s, one has

WTorR(∆)(d∆, s) =
∑

µR
s (D,m)

where the sum is taken over all s-real simple marked floor diagrams of genus 0 and Newton polygon ∆.

Example 3.15 All marked floor diagrams of genus 0 and Newton polygon ∆3 are depicted in Table 3.1
together with their real multiplicities when they are defined. The first floor diagram has an edge of weight
2, but we didn’t mention it in the picture to avoid confusion. Thanks to Theorem 3.14 we compute

WCP 2(3, s) = 8− 2s.
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6
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4

µC 4 1 1 1 1 1 1 1 1
µR

0 0 1 1 1 1 1 1 1 1
µR

1 0 1 1 1 1 1 - - 1
µR

2 0 1 1 1 1 1 -1 -1 1
µR

3 0 1 - - 1 1 -1 -1 1
µR

4 0 1 - - - - -1 -1 1

Table 3.1: Computation of WCP 2(3, s)

Example 3.16 Thanks to Figure 3.3, we compute

s 0 1 2 3 4 5
WCP 2(4, s) 240 144 80 40 16 0
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3.2.1.4 Elements of the proof of Theorems 3.11 and 3.14

In order to avoid as much as possible purely technical details, we sketch the proof of Theorem 3.14 only
in the case when s = 0. Let ∆ be a lattice polygon in R2, and E an edge of ∆. Recall that ∆ also defines
a tropical toric variety TorT(∆). The deformation of Tor(∆) ∪ NE to Tor(∆) mentioned in Section 3.1
is modeled tropically by the tropical sum of TorT(∆) and the tropical normal bundle of E. We refer to
[Sha11, Section 3.2] for the tropical sum construction. As a consequence, to implement in the tropical
setting the strategy described in Section 3.1, one simply has to consider configurations of points in R2

contained in a strip of the form [a; b]×R, and where all points are very far one from the others. The fact
that this strategy works in the case of a h-transverse polygon is ensured by Proposition 3.17 and Corollary
3.18. Recall that the set TC(∆, g, x) has been defined in Section 2.3.3.

Proposition 3.17 ([BM08, Proposition 5.4]) Let I = [a; b] be a bounded interval of R, and suppose
that ∆ is h-transverse. Then, if x is a subset of I × R, then any vertex of any curve in TC(∆, g, x) is
mapped to I × R.

An elevator of a tropical morphism f : C → R2 is an edge with uf,e = ±(0, 1). A floor of f is a
connected component of C with all elevators removed.

Corollary 3.18 ([BM08, Corollary 5.5]) Let I be a bounded interval of R, and suppose that ∆ is h-
transverse. If x is a subset of I × R and if the points of x are far enough one from the others, then the
image of any floor, and of any elevator of any curve in TC(∆, g, x) contains exactly one point in x.

Suppose that the hypothesis of Corollary 3.18 are satisfied, and that x = {p1, . . . , pℵ∆,g} with the
second coordinate of pi less than the one of pi+1. To a tropical morphism f : C → R2 in TC(∆, g, x), we
construct a marked planar floor diagram Φ(f) = (D(f),mf ) with Newton polygon ∆ as follows: floors
(resp. elevators) of C are in a natural one to one correspondence with floors (resp. edges) of D(f); given
a floor ε of C with a (unique) leaf e with uf,e = (−1,−α) where uf,e points to infinity, we define θ(ε) = α;
Corollary 3.18 implies that x induces a marking mf of D(f).

Theorems 3.11 and 3.14 now follows from next proposition.

Proposition 3.19 The map Φ is a bijection. Moreover, for any element f in TC(∆, g, x), one has
µC(f) = µC(Φ(f)) and µR(f) = µR

0 (Φ(f)).

Example 3.20 Applying the above procedure to the tropical cubics depicted in Figure 2.2, we obtain all
marked floor diagrams depicted in Table 3.1 together with their complex and 0-real multiplicities.

3.2.2 Floor diagrams with respect to a conic

Here we use floor diagrams to enumerate complex and real curves in the blow up of CP 2 at n points lying
on a smooth conic E. We denote this surface by X̃n. Note that enumerating real rational curves in X̃n à
la Welschinger does not produce an invariant as soon as n ≥ 6, due to the non-genericity of the complex
structure on X̃n.

The results presented in this section will be used in Section 4.2 to deduce explicit computations of
Gromov-Witten and Welschinger invariants of Del Pezzo surfaces.

As mentioned above, Itenberg, Kharlamov, and Shustin used the Caporaso-Harris approach to study
Welschinger invariants in the case of configurations of real points. In a series of paper [IKS13c, IKS13b,
IKS13a], they thoroughly studied the case of all real structures on Del Pezzo surfaces of degree at least
two. Due to methods presenting some similarities, this section, Section 4.2, and [IKS13b, IKS13a] contain
some results in common, nevertheless obtained independently and more or less simultaneously.
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3.2.2.1 Enumeration of curves in X̃n

The strict transform of E in X̃n is still denoted by E. We denote by E1, . . . , En the exceptional divisors
of the n blow ups, and by D the strict transform of a line not passing through any of these n points. The
group H2(X̃n;Z) is the free abelian group generated by [D], [E1], . . . , [En], and we have

c1(X̃n) = 3[D]−
n∑
i=1

[Ei] and [E]2 = 4− n.

Let d ∈ H2(X̃n;Z) with d 6= l[Ei] with l ≥ 2, and α, β ∈ Z∞≥0 such that

Iα+ Iβ = d · [E].

Choose a configuration x = x◦ t xE of points in X̃n, with x◦ a configuration of d · [D]− 1 + g+ |β| points

in X̃n \ E, and xE = {pi,j}0≤j≤αi,i≥1 a configuration of |α| points in E. Let Cα,β(d, g, x) be the set of

algebraic curves C of genus g in X̃n such that:

• C realizes the homology class d in X̃n;

• x ⊂ C;

• E is not a component of C;

• C has order of contact i with E at each point pi,j ;

• C has order of contact i with E at exactly βi distinct points in E \ xE .

It follows from [SS13, Proposition 2.1] that for a generic choice of x, the set Cα,β(d, g, x) is finite and its

cardinal does not depend on x. The Gromov-Witten invariant GWα,β

X̃n
(d, g) of X̃n relative to E is defined

by
GWα,β

X̃n
(d, g) =

∣∣Cα,β(d, g, x)
∣∣

for a generic choice of x. When α = 0 and β = (d · [E])u1, we use the shorter notation GWX̃n
(d, g).

Suppose in addition that E is a smooth real conic in CP 2 and that X̃n is obtained by blowing up
n− 2κ points on RE and κ pairs of complex conjugated points on E. In the case n = 2κ, we furthermore
assume1 that RE 6= ∅. The real structure on X̃n induced by the real structure on CP 2 via the blow up
map is denoted by X̃n(κ). In particular RX̃n(κ) = RP 2

n−2κ.

Definition 3.21 A real configuration x◦ in X̃n(κ) is said to be (E, s)-compatible if x◦ ∩ E = ∅ and x◦

contains s pairs of complex conjugated points. If L is a connected component of RX̃n(κ)\RE, we say that
x◦ is (E, s, L)-compatible if Rx◦ is in addition contained in L.

Given α<, α= ∈ Z∞≥0, a real configuration xE = {pi,j}0≤j≤α<i , i≥1t{qi,j , qi,j}0≤j≤α=i , i≥1 in E\
⋃n
i=1Ei

is said to be of type (α<, α=) if {pi,j} ⊂ RE and {qi,j} ⊂ E \ RE.

Choose d ∈ H2(X̃n;Z) so that d 6= l[Ei] with l ≥ 2, choose r, s ∈ Z≥0, and α<, β<, α=, β= ∈ Z∞≥0 such
that

d · [D]− 1 + g + |β<|+ 2|β=| = r + 2s and Iα< + Iβ< + 2Iα= + 2Iβ= = d · [E].

Choose a generic real configuration x = x◦txE of points in X̃n, with x◦ a (E, s)-compatible configuration
of d · [D] − 1 + g + |β<| + 2|β=| points, and xE ⊂ E a configuration of type (α<, α=). Denote by

1This is a just formal restriction: all the technique used in [Bru14] adapt immediately to the case RE = ∅, however the
floor diagrams that arise are slightly different from the ones presented here
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RCα<,β<,α=,β=(d, s, x) the set of real curves C in Cα<+2α=,β<+2β<(d, 0, x) such that for any i ≥ 1, the
curve C has exactly β<i real intersection points (resp. β=i pairs of conjugated intersection points) with E

of multiplicity i and disjoint from xE . Given F = RX̃n(κ) or F = L, we denote by m̃F (C) the number of
solitary nodes of C in F . Then we define the following number:

Wα<,β<,α=,β=

X̃n(κ)
(d, s, x) =

∑
C∈RCα<,β<,α=,β= (d,s,x)

(−1)m̃RX̃n(κ)
(C).

Suppose now that n = 2κ, in particular RE disconnects RX̃n(κ). Given L a connected component

of RX̃n(κ) \ RE, and a (E, s, L)-compatible configuration x, denote by RCα
<,β<,α=,β=

L (d, s, x) the set

of elements of RCα<,β<,α=,β=(d, s, x) such that L ∪ RE contains the 1-dimensional part of RC. Given

F = RX̃n(κ) or F = L, define:

Wα<,β<,α=,β=

X̃n(κ),L,F
(d, s, x) =

∑
C∈RCα

<,β<,α=,β=
L (d,s,x)

(−1)m̃F (C).

Note that these three series of numbers may vary with the choice of x.

3.2.2.2 Floor diagrams and their markings

Definition 3.22 A floor diagram of degree dD with respect to a conic is a floor diagram D satisfying the
following conditions:

• Vert+∞(D) = ∅;

• div(v) = 2 or 4 for any v ∈ Vert◦(D);

• if div(v) = 2, then v is a sink;

• one has ∑
v∈Vert−∞(D)

div(v) = −2dD.

A vertex v ∈ Vert◦(D) is called a floor of degree div(v)
2 .

Example 3.23 Figure 3.5 depicts all simple floor diagrams with respect to a conic of degree 1, 2 and 3.

2

a) d = 1, g = 0 b) d = 2, g = 0 c) d = 3, g = 1 d) d = 3, g = 0 e) d = 3, g = 0

Figure 3.5: Examples of simple floor diagrams with respect to a conic
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Definition 3.24 Choose two non-negative integers n and g, a homology class d ∈ H2(X̃n;Z), and two
vectors α, β ∈ Z∞≥0 such that

Iα+ Iβ = d · [E].

Let A0, A1, . . . , An be some disjoint sets such that |Ai| = d · [Ei] for i = 1, . . . , n, and

A0 = {1, . . . , d · [D]− 1 + g + |α|+ |β|}

A d-marking of type (α, β) of a floor diagram D with respect to a conic of genus g and degree d · [D] is a
map m :

⋃n
i=0Ai → D such that

1. the map m is injective and increasing, with no floor of degree 1 of D contained in the image of m;

2. for each vertex v ∈ Vert−∞(D) adjacent to the edge e ∈ Edge−∞(D), exactly one of the two elements
v and e is in the image of m;

3. m (
⋃n
i=1Ai) ⊂ Vert−∞(D);

4. for each i = 1, . . . , n, a floor of D is adjacent to at most one edge adjacent to a vertex in m(Ai);

5. m ({1, . . . , |α|}) = m(A0) ∩Vert−∞(D);

6. for 1 ≤ k ≤ αj, the edge adjacent to m(
∑j−1
i=1 αi + k) is of weight j;

7. exactly βj edges in Edge−∞(D) of weight j are in the image of m|A0
.

These conditions imply that all edges in m (
⋃n
i=1Ai) are of weight 1. A floor diagram enhanced with

a d-marking m is called a d-marked floor diagram and is said to be marked by m.

Definition 3.25 Let D be a floor diagram with respect to a conic equipped with two d-markings

m : A0 ∪
n⋃
i=1

Ai → D and m′ : A0 ∪
n⋃
i=1

A′i → D.

The markings m and m′ are called equivalent if there exists an isomorphism of floor diagrams φ : D → D
and a bijection ψ : A0 ∪

⋃n
i=1Ai → A0 ∪

⋃n
i=1A

′
i, such that

• ψ|A0
= Id;

• ψ|Ai : Ai → A′i is a bijection for i = 1, . . . , n;

• m′ ◦ ψ = φ ◦m.

In particular, for i = 1, . . . , n, the equivalence class of (D,m) depends on m(Ai) rather than on m|Ai .
As usual, marked floor diagrams are considered up to equivalence.

3.2.2.3 Relative Gromov-Witten invariants of X̃n

Definition 3.26 The complex multiplicity of a marked floor diagram (D,m) of type (α, β) with respect to
a conic, denoted by µC(D,m), is defined as

µC(D,m) = Iβ
∏

e∈Edge(D)\Edge−∞(D)

w(e)2.

Note that the complex multiplicity of a marked floor diagram only depends on its type and the
underlying floor diagram.
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Theorem 3.27 ([Bru14, Theorem 3.6]) For any d ∈ H2(X̃n;Z) such that d · [D] ≥ 1 and d 6= l[Ei]
with l ≥ 2, and any genus g ≥ 0, one has

GWα,β

X̃n
(d, g) =

∑
µC(D,m)

where the sum is taken over all d-marked floor diagrams with respect to a conic, of genus g and type (α, β).

Example 3.28 Theorem 3.27 applied with n ≤ 5, α = 0, and β = (d · [D])u1 gives Gromov-Witten
invariants of the Del Pezzo surfaces of degree 9 − n. In particular, as a simple application of Theorem
3.27 one can use floor diagrams depicted in Figure 3.5 to verify that

GWCP 2(1, 0) = GWCP 2(2, 0) = GWCP 2(3, 1) = 1 and GWCP 2(3, 0) = 4 + 8 = 12.

Example 3.29 ([Bru14, Example 3.8]) Thanks to Theorem 3.27, we compute

GWX̃6
(4[D]−

6∑
i=1

[Ei], 0) = 616, and GWX̃6
(6[D]− 2

6∑
i=1

[Ei], 0) = 2002.

These numbers have been first computed by Vakil in [Vak00a].

3.2.2.4 Enumeration of real rational curves

Let (D,m) be a d-marked floor diagram of genus 0, and let α<, β<, α=, β= ∈ Z∞≥0 such that

Iα< + Iβ< + 2Iβ= + 2Iβ= = d · [E].

Let ℵ = d · [D] − 1 + |α<| + |β<| + 2|α=| + 2|β=|, and choose two integers r, s ≥ 0 satisfying ℵ =
r + 2s+ |α<|+ 2|α=|.

The set {i, i + 1} ⊂ A0 is a called s-pair if either i = |α<| + 2k − 1 with 1 ≤ k ≤ |α=|, or i =
|α<|+ 2|α=|+ 2k− 1 with 1 ≤ k ≤ s. Denote by =(m, s) the union of all the s-pairs {i, i+ 1} where m(i)
is not adjacent to m(i + 1). Let ψ0,s : {1, . . . ,ℵ} → {1, . . . ,ℵ} be the bijection defined by ψ0,s(i) = i if
i /∈ =(m, s), and by ψ0,s(i) = j if {i, j} is a s-pair contained in =(m, s). Note that ψ0,s is an involution,
and that ψ0,0 = Id.

Now chose an integer 0 ≤ κ ≤ n
2 such that d · [E2i−1] = d · [E2i] for i = 1, . . . , κ. For i = 2κ+ 1, . . . , n,

define ψi,κ to be the identity on Ai. For i = 1, . . . , κ, choose a bijection ψ2i−1,κ : A2i−1 → A2i, and define
ψ2i,κ = ψ−1

2i−1,κ. Finally define the involution ρs,κ :
⋃n
i=0Ai →

⋃n
i=0Ai by setting ρs,κ|A0

= ψ0,s, and
ρs,κ|Ai = ψi,κ for i = 1, . . . , n. Note that ρ0,0 = Id.

Definition 3.30 A d-marked floor diagram (D,m) of genus 0 is called (s, κ)-real if the two marked floor
diagrams (D,m) and (D,m ◦ ρs,κ) are equivalent.

A (s, κ)-real d-marked floor diagram (D,m) is said to be of type (α<, β<, α=, β=) if

1. the marked floor diagram (D,m) is of type (α< + 2α=, β< + 2β=);

2. exactly 2β=j edges of weight j are contained in Edge−∞(D) ∩m (=(m, s)) for any j ≥ 1.

The set of (s, κ)-real d-marked floor diagrams of genus 0 and of type (α<, β<, α=, β=) is denoted

by Φα
<,β<,α=,β=(d, s, κ). Note that the involution ρs,κ induces an involution, denoted by ρm,s,κ, on the

underlying floor diagram of a real marked floor diagram.
The set of pairs of floors of D exchanged by ρm,s,κ is denoted by Vert=(D). The subset of Vert=(D)

formed by floors of degree i is denoted by Vert=,i(D). To a pair {v, v′} ∈ Vert=(D), we associate the
following numbers:
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• ov is the sum of the degree of v and the number of its adjacent edges which are in their turn adjacent
to m

(⋃n
i=2κ+1Ai

)
;

• o′v is the number of edges of weight 2 + 4l adjacent to v.

The set of edges of D which are fixed (resp. exchanged) by ρm,s,κ is denoted by Edge<(D) (resp.
Edge=(D)). The number of edges contained in m ({ℵ − r + 1, . . . ,ℵ}) is denoted by rm, and the number
of edges contained in Edge<(D) ∩m ({1, . . . ,ℵ − r}) is denoted by r′m.

If n = 2κ and ε ∈ {0, 1}, the marked floor diagram (D,m) is said to be ε-sided if any edge in Edge<(D)
is of even weight, and, if ε = 1, any floor of degree 1 is contained in a pair in Vert=(D). It is said to be
significant if it satisfies the three following additional conditions:

• any edge in Edge=(D) \m (
⋃n
i=1Ai) is of even weight;

• any edge in Edge<(D) \ Edge−∞(D) has weight 2 + 4l;

• for any {v, v′} ∈ Vert=(D) and any i = 1, . . . , n, the vertex v is adjacent to an edge adjacent to
m (Ai) if and only if so is v′.

Finally define

E(D) =
(
Edge(D) \ Edge−∞(D)

)
∩m ({1, . . . ,ℵ − r}) and β<even =

∑
j≥0

β<2j .

Definition 3.31 Let (D,m) be a (s, κ)-real d-marked floor diagram. The (s, κ)-real multiplicity of (D,m),
denoted by µR

s,κ(D,m), is defined by

µR
s,κ(D,m) = 2β

<
even Iβ

= ∏
{v,v′}∈Vert=(D)

(−1)ov
∏

e∈E(D)

w(e)

if m(=(m, s))
⋃

Edge−∞(D) contains all edges of D of even weight, and by

µR
s,κ(D,m) = 0

otherwise.

If in addition 2κ = n and (D,m) is ε-sided, we define an additional (s, κ)-real multiplicity of (D,m)
as follows

νR,εs (D,m) = (−1)ε|Vert=,1(D)| 22rm−r′m+β<even Iβ
= ∏
{v,v′}∈Vert=,2(D)

(−1)o
′
v

∏
e∈E(D)

w(e)

if (D,m) is significant, and by
νR,εs (D,m) = 0

otherwise.

Next, given α<, β<, α=, β=, we define

FWα<,β<,α=,β=

X̃n(κ)
(d, s) =

∑
µR
s,κ(D,m)

where the sum is taken over all (s, κ)-real d-marked floor diagrams of type (α<, β<, α=, β=).
If in addition n = 2κ, we define the following numbers

FWα<,β<,α=,β=

X̃n(κ),ε
(d, s) =

∑
µR
s,κ(D,m)
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where the sum is taken over all ε-sided (s, κ)-real d-marked floor diagrams of type (α<, β<, α=, β=), and

FWα<,β<,α=,β=

X̃n(κ),ε,ε
(d, s) =

∑
νR,εs (D,m)

where the sum is taken over all significant ε-sided (s, κ)-real d-marked floor diagrams of type (α<, β<, α=, β=).
Note that by definition we have

FWα<,β<,α=,β=

X̃n(κ)
(d, s) = FWα<,β<,α=,β=

X̃n(κ),ε
(d, s) = FWα<,β<,α=,β=

X̃n(κ),ε,ε
(d, s) = 0

if d · [E] 6= Iα< + Iβ< + 2Iα= + 2Iβ=.

Next theorem relates the three series of numbers FW to actual enumeration of real curves in X̃n(κ).

When n = 2κ, the connected component of RX̃n(κ) \ RE with Euler characteristic ε is denoted by L̃ε.

Theorem 3.32 ([Bru14, Theorem 3.12]) Let ℵ0, r, s, κ ≥ 0 be some integers such that ℵ0 = r + 2s.

Then there exists a generic (E, s)-compatible configuration x◦ of ℵ0 points in X̃n such that:

1. for any d ∈ H2(X̃n;Z) with d · [D] ≥ 1 and d 6= l[Ei] with l ≥ 2, any α<, β<, α=, β= ∈ Z∞≥0 such that

d · [D]− 1 + |β<|+ 2|β=| = ℵ0 and d · [E] = Iα< + Iβ< + 2Iα= + 2Iβ=,

and any generic real configuration xE ⊂ E of type (α<, α=), one has

Wα<,β<,α=,β=

X̃n(κ)
(d, s, x◦ t xE) = FWα<,β<,α=,β=

X̃n(κ)
(d, s).

2. If moreover n = 2κ, and x is (E, s, L̃ε)-compatible, then

Wα<,β<,α=,β=

X̃n(κ),L̃ε,RX̃n(κ)
(d, s, x◦ t xE) = FWα<,β<,α=,β=

X̃n(κ),ε
(d, s),

and

Wα<,β<,α=,β=

X̃n(κ),L̃ε,,L̃ε
(d, s, x◦ t xE) = FWα<,β<,α=,β=

X̃n(κ),ε,ε
(d, s).

Example 3.33 If n ≤ 5, the surface X̃n(κ) is Del Pezzo, hence Theorem 3.32(1) computes Welschinger

invariants of X̃n(κ). In particular, applying Theorem 3.32 with n = 0, we verify again that

WCP 2(1, s) = WCP 2(2, s) = 1 and WCP 2(3, s) = 8− 2s.

Example 3.34 ([Bru14, Example 3.14]) Fix n = 6 and ℵ0 = 5. Given 0 ≤ s ≤ 2, let x◦s be a

configuration whose existence is attested by Theorem 3.32 with r = 5−2s. All numbers W 0,β<,0,β=

X̃6(κ)
(dk, s, x

◦
s)

for the classes dk = 6[D]−2
∑6
i=1[Ei]−k[E] with k = 0, 1, 2, as well as the numbers W 0,β<,0,β=

X̃6(3),L̃ε,L̃ε
(d0, s, x

◦
3),

are listed in Tables 3.2 and 3.3. In the case k = 2, this value is 1 for (β<, β=) given in Table 3.2a, and

0 otherwise. In the case k = 1, the numbers W 0,β<,0,β=

X̃6(κ)
(d1, s, x

◦
s) vanish for all values of β< and β= not

listed in Table 3.2b. In the case k = 0, all (s, 3)-real diagrams contributing to W 0,0,0,0

X̃6(3)
(d0, s, x

◦
s) are ε-sided

with ε ∈ {0, 1}, so we have W 0,0,0,0

X̃6(3)
(d0, s, x

◦
s) = W 0,0,0,0

X̃6(3),L̃ε,RX̃6(3)
(d0, s, x

◦
s).
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s β< β=

0 4u1 0
1 2u1 u1

2 0 2u1

s\κ 0 1 2 3
0 β< = 2u1 236 140 76 36

1
β< = 2u1 80 50 28 14
β= = u1 62 28 10 0

2 β= = u1 74 36 14 0

a) W 0,β<,0,β=

X̃6(κ)
(d2, s, x

◦
s) = 1 b) W 0,β<,0,β=

X̃6(κ)
(d1, s, x

◦
s)

Table 3.2:

s\κ, ε 0 1 2 3 0 1
0 522 236 78 0 160 96
1 390 164 50 0 64 32
2 286 128 50 20 24 8

Table 3.3: W 0,0,0,0

X̃6(κ)
(d0, s, x

◦
s) and W 0,0,0,0

X̃6(3),L̃ε,L̃ε
(d0, s, x

◦
s)

3.2.2.5 Elements of the proof of Theorems 3.27 and 3.32

Again we apply the strategy detailed in Section 3.1. Recall that NE = P(NE/X̃n ⊕ C), and let us define

E∞ = P(NE/X̃n ⊕ {0}), and E0 = P(E ⊕ {1}).
The degeneration of X̃n performed in step (1) is standard, see [Ful84, Chapter 5] for example. Consider

the complex variety Y obtained by blowing up X̃n × C along E × {0}. Then Y admits a natural flat
projection π : Y → C such that

• π−1(t) = X̃n for t 6= 0;

• π−1(0) = X̃n ∪ NE , the surfaces X̃n and NE intersecting transversely along E in X̃n, and E∞ in
NE .

If E denotes the Zariski closure of E×C∗ in Y, then E ∩π−1(0) = E0. At this point, it is more convenient

to consider elements of Cα,β(d, g, x(t)) as maps f : C → X̃n from a smooth genus g algebraic curve, rather
than as embedded curves.

Choose x◦(t) (resp. xE(t)) a set of d · [D]− 1 + g + |β| (resp. |α|) holomorphic sections C→ Y (resp.

C → E), and denote x(t) = x◦(t) t xE(t). Define Cα,β(d, g, x(0)) to be the set
{
f : C → X̃n ∪NE

}
of

limits, as stable maps, of maps in Cα,β(d, g, x(t)) as t goes to 0. Recall that C is a connected nodal curve
with arithmetic genus g such that

• x(0) ⊂ f(C);

• any point p ∈ f −1
(X̃n ∩NE) is a node of C which is the intersection of two irreducible components

C
′

and C
′′

of C, with f(C
′
) ⊂ X̃n and f(C

′′
) ⊂ NE ;

• if in addition neither f(C
′
) nor f(C

′′
) is entirely mapped to X̃n ∩ NE , then the multiplicity of

intersection of E with both f(C
′
) and f(C

′′
) at f(C

′ ∩ C ′′) coincide.
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Proposition 3.35 ([Bru14, Section 5.1]) Suppose that x(0) is generic, and that d 6= l[Ei] with l ≥ 2.

Then the set Cα,β(d, g, x(0)) is finite, and only depends on x(0). Moreover if f : C → X̃n ∪ NE is an
element of Cα,β(d, g, x(0)), then the following hold:

• no irreducible component of C is entirely mapped to X̃n ∩NE;

• any irreducible component of C entirely mapped to Ei is isomorphically mapped to Ei;

• all morphisms which converge to f as t goes to 0 can be recovered from f ;

• if in addition X̃n, x(t), and f are real, then all real morphisms which converge to f as t goes to 0
can be recovered from f .

The last point in Proposition 3.35 is proved thanks to a suitable adaptation of Proposition 4.12 below.
Recall that NE admits a natural projection NE → E0, and let us denote by ι the class realized by a fiber
in H2(NE ;Z).

Corollary 3.36 ([Bru14, Corollary 5.5]) Let x◦N = x◦(0)∩NE, and let C
′

an irreducible component of

C mapped to NE. If |x◦N ∩ f(C
′
)| ≤ 2, then f(C

′
) realizes either the class dιι or [E∞] +dιι in H2(NE ;Z).

Moreover we have |x◦N ∩ f(C
′
)| ≤ 1 in the former case, and 1 ≤ |x◦N ∩ f(C

′
)| ≤ 2 in the latter case.

Now Theorem 3.27 can be proved by a recursive use of Proposition 3.35. The fact that such a recursion
is indeed possible is in particular ensured by the fact that any class realized by the image of any irreducible
component of C is distinct from l[Ei] with l ≥ 2.

The union Y of finitely many irreducible algebraic varieties Y1, . . . , Yk intersecting transversely is called
a chain if Yi∩Yj 6= ∅ only when |i−j| = 1. In this case denote by Z+

i (resp. Z−i ) the intersection Yi∩Yi+1

viewed as a subvariety of Yi (resp. Yi+1), and write

Y = Yk Z−k−1
∪Z+

k−1
Yk−1 Z−k−2

∪Z+
k−2

. . . Z−1
∪Z+

1
Y1.

Assume now that d · [D] ≥ 1 and d · [D]− 1 + g+ |β| ≥ 1, all remaining cases being trivial. Recall that
we have chosen two non-negative integers r and s such that

d · [D]− 1 + g + |β| = r + 2s,

and that s > 0 implies that g = 0. By iterating the degeneration process of X̃n described above, we
construct a flat morphism π : Z → C such that

• π−1(t) = X̃n for t 6= 0;

• π−1(0) is a chain of Xn and r + s+ 1 copies of NE :

π−1(0) = X̃n E ∪E∞ NE,s+r E0 ∪E∞ NE,s+r−1 E0 ∪E∞ . . . E0 ∪E∞ NE,0.

Choose x◦(t) a generic set of d · [D] − 1 + g + |β| holomorphic sections C → Z such that x◦(0) contains
exactly one point (resp. two points) in each NE,i with i ≥ s + 1 (resp. 1 ≤ i ≤ s). Choose xE(t) a
generic set of |α| holomorphic sections C→ Z such that xE(t) ∈ E for any t ∈ C∗. In particular xE(0) is
contained in the divisor E0 of NE,0. Define x(t) = x◦(t) t xE(t).

Using Proposition 3.35 and Corollary 3.36, one describes any limit f : C → π−1(0) of maps in
Cα,β(d, g, x(t)) as t goes to 0 by a marked floor diagram (D(f),mf ) with respect to a conic. Floors

of D(f) of degree 2 (resp. of degree 1) correspond to components of C realizing a class [E∞] + dιι in

H2(NE,i;Z) (resp. realizing a class [D] or [D] − [Ei] in H2(X̃n;Z)). The complex and real multiplicities
of (D(f),mf ) follows from Proposition 3.35.
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3.2.2.6 Further comments

The methods exposed in this paper adapt without any problem to the case when r = 0 or 1 and E has an
empty real part. In particular, adapting proof of Theorems 3.32 and 4.20, we prove in Proposition 4.24
that the invariant WX−7 (4),RP 2,RX−7 (4)(d, s) is sharp when r ≤ 1.

Recently, Kollár proved in [Kol14] the optimality of some real enumerative invariants of projective
spaces of any dimension, by specializing the constraints to a real quadric with an empty real part. It
would be interesting to try to generalize Kollár’s examples, and to tackle the optimality problem of the
invariants defined in [Wel05b, GZ13] via floor diagrams relative to a quadric in CPn.

3.2.3 Floor diagrams for rational curves in projective spaces

Here we use floor diagrams to enumerate rational curves in projective spaces. The strategy is the same
than in Section 3.2.1, however the combinatoric becomes much heavier. This is in particular due to the
fact that constraints may have different dimensions.

Given some integer numbers n ≥ 2 and l0, . . . , ln−2 ≥ 0 such that

n−2∑
j=0

lj(n− 1− j) = (n+ 1)d+ n− 3, (3.1)

we denote by GWCPn(d; l0, . . . , ln−2) the Gromov-Witten invariant of CPn counting rational curves of
degree d intersecting a generic arrangement of li linear subspaces of dimension j for all j = 0, . . . , n − 2
(see for example [KV06]).

3.2.3.1 Projective floor diagrams

Definition 3.37 A floor diagram D of genus 0 is said to be projective if Vert+∞(D) = ∅ and all floors
if D have positive divergence.

The degree of a projective floor diagram D is the sum of the divergence of its floors.

Remark 3.38 Projective floor diagrams of genus 0 and degree d in the sense of Definition 3.37, with
div(v) = 1 for all floors v, are precisely the planar floor diagrams of genus 0 with Newton polygon ∆d in
the sense of Definition 3.5.

Let n ≥ 2 and l0, . . . , ln−2 ≥ 0 be integer numbers subject to equation (3.1) and let

P = {x(0)
1 , . . . , x

(0)
l0
, . . . , x

(n−2)
1 , . . . , x

(n−2)
ln−2

}

be a set of
n−2∑
j=0

lj distinct elements equipped with some total ordering <. We define dim(x
(j)
k ) = j.

Definition 3.39 A map m : P → D \ Vert−∞(D) is called a marking of D if it satisfies the following
conditions:

• Vert◦(D) ⊂ m(P);

• if q < q′ and m(q) > m(q′), then m(q′) ∈ Vert◦(D) and there exists q′′ < q such that m(q′′) = m(q′).

A simple projective floor diagram D enhanced with a marking is called a marked floor diagram, and is
said to be marked by m. We also say that D is an n-dimensional projective floor diagram marked by l0
points, l1 lines, . . ., ln−2 codimension 2 planes.
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Definition 3.40 Two marked floor diagrams (D,m) and (D′,m′) are called equivalent if there exists a
isomorphism of floor diagrams φ : D → D′ such that m = m′ ◦ φ.

They are called to be of the same combinatorial type if there exists a bijection σ : P → P that preserves
the dimension of the constraints and such that (D,m) is equivalent to (D,m ◦ σ).

As usual, we consider marked projective floor diagrams up to equivalence.

3.2.3.2 Enumeration of complex projective curves

To any simple projective marked floor diagram (D,m) of genus 0, we assign a integer called its complex
multiplicity, denoted by µC(D,m). This multiplicity records the number of complex curves encoded by
the diagram.

We first need to associate a integer number to any edge e of D as follows. Let D<e be the component
of D \ e that contains elements of D lower than e. Then we define

h(e) =
∑

q∈P, m(q)∈D<e

(
n− 1− dim(q)

)
+ 1− w(e)− (n+ 1)

∑
v∈Vert◦(D)∩D<e

div(v).

Given a floor v of D, let us do the following: for the minimum element x
(j)
k of m−1(v), we take a linear

space of dimension j; for each other element x
(j′)
k′ in m−1(v), we take a linear space of dimension j′ − 1;

we take a linear space of dimension h(e) for each edge e outgoing from v; for each edge e incoming to v
we take a linear space of dimension

n− 1− h(e)−
∑

q∈P, m(q)∈e

(
n− 1− dim(q)

)
.

If any of these numbers is outside of the range between 0 and (n− 2) then we set

µC(v) = 0.

Otherwise denote the number of resulting j-dimensional linear spaces with l
(v)
j and define

µC(v) = div(v)l
(v)
n−2GWCPn−1(div(v); l

(v)
0 , . . . , l

(v)
(n−3)).

Note that we express µC(v) in terms a Gromov-Witten invariant of CPn−1.

Definition 3.41 The complex multiplicity of a simple projective marked floor diagram (D,m) of genus 0
is defined as

µC(D,m) =
∏

v∈Vert◦(D)

µC(v)
∏

e∈Edge(D)

w(e)1+|(m−1(e)|.

Note that two marked floor diagrams of the same combinatorial type have the same complex multi-
plicity.

Example 3.42 When n = 2, a projective marked diagram (D,m) of degree d with non-zero multiplicity
is a planar marked floor diagram of genus 0 and Newton polygon ∆d. In particular h(e) = 0 for any
e ∈ Edge(D), and

µC(D,m) =
∏

e∈Edge(D)

w(e)2.
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1, µC = 1 1, µC = 1 1, µC = 1 1, µC = 1 1, µC = 1

x
(1)
i < x

(0)
1 x

(0)
1 < x

(1)
i

Figure 3.6: 3-dimensional projective marked floor diagrams of genus 0 and degree 1, marked by two points,
one point and two lines, and four lines

Example 3.43 In Figure 3.6, we depict all combinatorial types of 3-dimensional floor diagrams of genus
0 and degree 1 with non-null multiplicity, marked by either two points, a point and two lines, or four lines.
The chosen order on P plays a role only in the case of one point and two lines, for which we depict the
combinatorial types corresponding to two different orders.

For each combinatorial type, we depict the floor diagram together with the image of the marking m. In
addition we write below the number of marked floor diagram of this combinatorial type, and the complex
multiplicity of such a floor diagram.

Example 3.44 In Figure 3.7, we depict all combinatorial types of 3-dimensional floor diagrams of genus
0 and degree 3, 4, and 5, marked by respectively 6, 8, and 10 points and with non-null multiplicity. Note
that there does not exist any 3-dimensional marked floor diagram of genus 0 and degree 2 marked by 4
points with non-null multiplicity.

2

2

2

1, µC = 1 1, µC = 4 3, µC = 12 21, µC = 1 6, µC = 8

Figure 3.7: 3-dimensional marked floor diagrams of degree 3, 4, and 5 respectively marked by 6, 8, and
10 points

Example 3.45 In Figure 3.8, we depict all combinatorial types with non-null multiplicity of 3-dimensional
floor diagrams of degree 2 marked by 8 lines.

5, µC = 1 3, µC = 1 10, µC = 1 12, µC = 1 3, µC = 1 5, µC = 1 3, µC = 1

10, µC = 1 12, µC = 1 3, µC = 1 1, µC = 8 3, µC = 4 3, µC = 2

Figure 3.8: 3-dimensional marked floor diagrams of degree 2 marked by 8 lines

Enumeration of marked floor diagrams and of complex rational curves in CPn are related by the
following theorem.
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Theorem 3.46 ([BM07, Theorem 1], [BMa, Theorem 2.10]) For any n ≥ 2 and any integer num-
bers l0, . . . , ln−2 ≥ 0 subject to equality (3.1), the number GWCPn(d; l0, . . . , ln−2) is equal to the sum of
the complex multiplicity of all n-dimensional floor diagrams of genus 0 and degree d, marked by l0 points,
l1 lines, . . ., ln−2 codimension 2 planes.

Example 3.47 Using Figures 3.6, 3.7, and 3.8, we verify that

GWCP 3(1; 2, 0) = GWCP 3(1; 1, 2) = 1, GWCP 3(1; 0, 4) = 2, GWCP 3(2; 4, 0) = 0,

GWCP 3(2; 0, 8) = 92, GWCP 3(3; 6, 0) = 1, GWCP 3(4; 8, 0) = 4, GWCP 3(5; 10, 0) = 105.

3.2.3.3 Welschinger invariants of RP 3

Welschinger also defined invariants for real rational curves in RP 3 passing through points, see [Wel05b].
We denote by WRP 3(d) the corresponding invariants for curves of degree d passing through a configuration
of real points. Note that Mikhalkin observed that, by symmetry reasons, all Welschinger invariants of
RP 3 of even degree vanish.

Here we compute the invariants WRP 3(d) via floor diagrams.

Definition 3.48 Let (D,m) be a 3-dimensional projective floor diagram of genus 0 only marked by points.
The real multiplicity of (D,m) is defined by

µR(D,m) =
∏

v∈Vert◦(D)

WRP 2(d, 0)

if all edges of D are odd, and by
µR(D,m) = 0

otherwise.

Theorem 3.49 ([BMa, Theorem 2]) For any d ≥ 1, we have

WRP 3(d) = (−1)
(d−1)(d−2)

2

∑
µR(D,m)

where the sum ranges over all 3-dimensional projective floor diagrams of genus 0 and degree d marked by
2d points.

Example 3.50 Using marked floor diagrams depicted in Figures 3.6, and 3.7, we compute

WRP 3(1) = 1, WRP 3(2) = 0, WRP 3(3) = −1, WRP 3(5) = 45.

Note that one can deduce that WRP 3(2k) = 0 also from Theorem 3.49.

3.2.3.4 Elements of the proof of Theorems 3.46 and 3.49

As in the case of planar floor diagrams, the basic ingredient for the floor diagram technique to work in
our situation is to stretch the configuration of constraints in the vertical direction. A complete tropical
linear space in Rn is a tropical intersection of finitely many tropical hyperplane.

Let us fix some integers d ≥ 1, n ≥ 2, l0 ≥ 0, . . ., ln−2 ≥ 0 subject to equality (3.1), and let us choose a
generic configuration x of complete tropical linear spaces in Rn containing exactly lj spaces of dimension
j. We denote by TC(d, x) is the set of all rational closed tropical morphisms f : C → Rn of degree d
such that f(C) intersects all tropical linear spaces in x. Let Vert(L) be the set of vertices of the complete
tropical linear space L, and let us fix a hypercube Hn−1 in Rn−1 such that the cylinder Hn−1×R contains
the set ∪L∈xVert(L).
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Lemma 3.51 ([BMa, Proposition 5.7]) For any tropical morphism f : C → Rn in TC(d, x), we have
f(Vert(C)) ⊂ Hn−1 × R.

Given two points p = (p1, . . . , pn) and q = (q1, . . . , qn) in Rn, we define |p − q|n = |pn − qn|. Finally,
we define RH to be the euclidean length of the edges of Hn−1, and

R(xT) = min
L 6=L′∈x, p∈Vert(L), q∈Vert(L′)

|p− q|n.

An elevator of a tropical morphism f : C → Rn is an edge with uf,e = ±(0, 0, . . . , 0, 1). A floor of
f is a connected component of C with all elevators removed. Analogously, the wall (resp. floor) of a
complete tropical linear space L is the union of all faces of L which contain (resp. do not contain) the
direction (0, . . . , 0, 1). An element L of x is called a vertical (resp. horizontal) constraint for f ∈ TC(d, x)
if f(C) ∩ L lies in the wall (resp. floor) of L.

Corollary 3.52 ([BMa, Proposition 5.8]) There exists a real number D(n, d), depending only in n
and d, such that if R(x) ≥ RH ×D(n, d), then for each morphism f : C → Rn in TC(d, x) and for each
floor F of f , f(F) meets one and exactly one horizontal constraint.

Now as in the case of h-transverse polygons, a projective marked floor diagram Φ(f) = (D(f),m) can
be naturally associated to an element f of TC(d, x). The map Φ is no longer a bijection when n ≥ 3,
however we have the following proposition, where µC

x(f) is the complex multiplicity of an element f of
TC(d, x) (see [BMa]).

Proposition 3.53 ([BMa, Proposition 5.14]) If (D,m) is a floor diagram marked by x, then∑
f∈Φ−1(D,m)

µC
x(f) = µC(D,m).

3.3 Applications

We present now various applications of floor diagrams.

3.3.1 Qualitative results about Welschinger invariants

3.3.1.1 Logarithmic asymptotic

Floor diagrams may be used to prove several estimate on Welschinger invariants. In the case of surfaces,
Itenberg, Kharlamov, and Shustin studied in particular their asymptotic for real algebraic surfaces whose
underlying complex variety is CP 1 ×CP 1 and CP 2 blown up in at most 7 points. Floor diagrams can be
used to give an alternate proof of those results, which can be extended to the 3-dimensional case.

As an example, a proof using floor diagrams of the following statement can be found in [BM08].

Theorem 3.54 (Itenberg, Kharlamov, Shustin, [IKS04]) The sequence (WRP 2(d, 0))d≥1 is increas-
ing, and strictly increasing starting from WRP 2(2, 0).

The logarithmic asymptotic of WRP 2(d, 0) is given by

log(WRP 2(d, 0)) ∼d→∞ 3d log d ∼d→∞ log(GWCP 2(d; 3d− 1)).

The proof from [Bru08] extends easily to the case of WRP 3(d). Recall that WRP 3(2k) = 0.
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Theorem 3.55 ([BMa]) The sequence (WRP 3(2k+ 1))k≥1 is increasing, and strictly increasing starting
from WRP 3(3).

The logarithmic asymptotic of WRP 3(2k + 1) is given by

log(WRP 3(2k + 1)) ∼k→∞ 4k log k ∼k→∞ log(GWCP 3(d; 2d, 0)).

Let us sketch briefly the proof of the logarithmic equivalences. We define the following sequence
(Dnk )k≥1 of projective floor diagrams of genus 0:

• Dn1 is the projective floor diagram of degree 1;

• the floor diagram Dnk is obtained from Dnk−1 by attaching to each edge in Edge−∞(Dnk−1) a floor of
degree n− 1 adjacent to n edges, all of them of weight 1.

a) D2
3 b) D2

4 c) D3
3 d) D3

4

Figure 3.9:

Example 3.56 The floor diagrams D2
3, D2

4, D3
3 and D3

4 are depicted in Figure 3.9.

Both logarithmic equivalences of Theorems 3.54 and3.55 are now a consequence of the next easy lemma
specialized to the case n = 2 and 3. We define the integer

pn,d =
(n+ 1)dn + (n− 3)

n− 1

and ν(Dnk ) to be the number of n-dimensional markings of Dnk by pn,d points.

Lemma 3.57 The floor diagram Dnk is of degree nk−1, and one has

log(ν(Dnk )) ∼k→∞ pnn,nk−1 log(nk−1).

3.3.1.2 Congruences and comparison

It is obvious that real and complex enumerative invariants, when both are defined, are equal modulo 2.
Mikhalkin noticed that in the case of toric real Del Pezzo surfaces and s = 0, this equality is actually
true modulo 4. This observation has been generalized to all maximal Del Pezzo surface of degree at
least 2 by Itenberg, Kharlamov, and Shustin [IKS13c, IKS13b, IKS13a]. Combining Theorems 3.27 and
3.32 together with Theorems 4.25 and 4.27, we extend this congruence in Corollary 4.31 to the case of
the maximal Del Pezzo surface of degree 1. In their turn, Theorems 3.46 and 3.49 allow to generalize
Mikhalkin’s congruence to WRP 3 .

Proposition 3.58 ([BMa]) For any d ∈ N∗, one has

|WRP 3(d)| = GWCP 3(d; 2d, 0) mod 4.

Combining Theorems 3.27 and 3.32 together with Theorems 4.17, 4.20, 4.25, 4.27, and 4.6, we obtain
Corollaries 4.21, 4.22, 4.29, 4.30, and Proposition 4.9 on Welschinger invariants of Del Pezzo surfaces. We
refer to Chapter 4 for precise statements. These results compare Welschinger invariants for different real
structures on the same complex surface, and extend positivity results obtained by Itenberg, Kharlamov,
and Shustin in [IKS04, IKS13c, IKS13b, IKS13a].
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3.3.1.3 Sharpness of Welschinger invariants

The invariant W(X,τ),L,L′(d, s) is said to be sharp if there exists a real configuration x with s pairs of
complex conjugated points such that |RC(d, 0, x)| = |W(X,τ),L,L′(d, s)|. When r = 0 or 1, Welschinger
proved in [Wel07] the sharpness of W(X,τ),L(d, s) in some cases. The methods used in the proof of
Theorems 3.32 and 4.20 adapt without any problem to the case when r = 0 or 1 and E has an empty real
part. In particular, such adaptations allow one to extend [Wel07, Theorem 1.1] to the real surface X−7 (4),
see Proposition 4.24.

Note that it follows from Example 4.23 that WX+
7 (4),L0,RX+

7 (4)(2c1(X7), 1) is not sharp. This shows

that [Wel07, Theorem 1.1] does not extend to all real structures on X7.

3.3.1.4 Vanishing results

Floor diagrams also provide a simpler proof of the vanishing Theorem 4.4 in some particular instances.
Since Theorem 4.4 is more general, we do not develop here this application of floor diagrams. We refer
instead to [Bru14] for more details.

3.3.2 Recursive formulas of Caporaso-Harris type

As mentioned in Section 3.1, when both floor diagrams and Caporaso-Harris type formulas are available,
these two methods provide two different but equivalent ways of clustering curves under enumeration. The
method to pass from floor diagrams to Caporaso-Harris type formulas is explained in [ABLdM11]. In
particular we wrote down there such a formula computing Welschinger invariants of RP 2 for any value
of r and s. Since it is a rather impressive formula, we do not reproduce it here, and refer instead to
[ABLdM11, Theorem 5.2]. As a consequence, we were able to compute for the first time in [ABLdM11]
the value WCP 2(9, 12), which turned out to satisfy 0 < WCP 2(9, 12) < WCP 2(9, 13). This computation
disproved the monotonicity conjecture of the function s 7→WCP 2(d, s) by Itenberg, Kharlamov and Shustin
(see [IKS04, Conjecture 6]).

To give a taste of those Caporaso-Harris type formulas, we give below a formula which computes the
invariants WRP 3(d).

Given an integer number l ≥ 0 and two odd vectors α and β in Z∞≥0, we denote by S3(l, α, β) the set

composed by the vectors (d1, . . . , dl, k1, . . . , kl, α1, . . . , αl, β1, . . . , βl) ∈ Z2l
>0 × (Z∞≥0)2l satisfying

• ∀i, (di, ki, αi, βi) ≤ (di+1, ki+1, αi+1, βi+1) for the lexicographic order,

•
∑
di < Iα+ Iβ,

•
∑
αi ≤ α,

• ∀i, ki is odd,

• ∀i, βi ≥ uki ,

•
∑

(βi − uki) = β,

• ∀i, Iαi + Iβi = di,

• l + |α−
∑
αi| = 3d− 3

∑
di − 2.

To any element s = (d1, . . . , dl, k1, . . . , kl, α1, . . . , αl, β1, . . . , βl) of S3(l, α, β), we associate the equiva-
lence relation ∼s on the set {1, . . . , l} defined by

i ∼s j ⇔ (di, ki, αi, βi) = (dj , kj , αj , βj)
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For each of the equivalent classes of ∼s, evaluate the factorial of its cardinal, and denote by σ(s) the
product of these factorials.

Finally, given an integer number d ≥ 1 and two odd vectors α and β in Z∞≥0 satisfying Iα + Iβ = d,

we define the numbers Wα,β
3 (d) by the initial value Wu1,0

3 (1) = 1 and the relation

Wα,β
3 (d) =

∑
k odd|β≥ukW

α+uk,β−uk
3 (d) +

∑
l≥0

s∈S3(l,α,β)

[
1

σ(s)W2 (d−
∑
di, 0)

(
3d−|α|+|β|

2 − 1
3d1−|α1|+|β1|

2 , . . . , 3dl−|αl|+|βl|
2

)

(
α

α1, . . . , αl

)∏l
i=1(βi)kiW

αi,βi
3 (di)

]

The numbers Wα,β
3 (d) and WRP 3(d) are related by the following theorem.

Theorem 3.59 ([ABLdM11, Theorem 7.1]) For any d ≥ 1, one has

WRP 3(d) = (−1)
(d−1)(d−2)

2 W 0,du1

3 (d).

Example 3.60 We list below the first value of W3(d) computed using Theorem 3.59 (recall that W3(2k) =
0).

d 1 3 5 7 9 11 13
W3(d) 1 −1 45 −14589 17756793 −58445425017 426876362998821

3.3.3 Maximal real configurations for real conics

It is an important and difficult question to ask how many solutions of an enumerative problem can be
real. When all complex solutions can be real, we say that this enumerative problem is maximally real.

To determine whether an enumerative problem is maximally real or not is in general a very difficult
task, and not much is known in general. With the help of floor diagrams, we proved in collaboration
with Puignau in [BP13b] that problems involving conics in projective spaces subject to simple incidence
conditions are maximally real.

Let us first recall the context. Given integer numbers n ≥ 2 and l0, . . . , ln−2 ≥ 0 such that

n−2∑
j=0

lj(n− 1− j) = (n+ 1)d+ n− 3,

and given a configuration x of li real linear subspaces of RPn of dimension i for all i = 0 . . . , ln−2, we
denote by NR

n (d; l0, . . . , ln−2, x) the number of real rational curves of degree d in RPn intersecting all
elements of x. This number depends on the chosen configuration x. Clearly, we have the inequality

NR
n (d; l0, . . . , ln−2, x) ≤ GWCPn(d; l0, . . . , ln−2) ∀x.

However, it is unknown in general if there exists a real configuration x such that all complex solutions are
real. For example, can the 92 complex conics passing through 8 general lines in RP 3 be real?

To stress how difficult these questions are, let us summarize the very few things known in 2014 about
the maximality of the enumerative problems defined above. Since the corresponding Gromov-Witten
invariant is equal to 1, it is trivial that the problem is maximal in the two following cases:
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• d = 1, l0 ≥ 1;

• n = 2, d = 2, and l0 = 5.

It is also easy to see that the problem is maximal in the case n = 2 and d = 3 (and so l0 = 8). The first
systematic non-trivial result was obtained by Sottile who proved in [Sot97] that the problem is maximal as
soon as d = 1 (the so-called problems of ”Schubert-type”). Actually problems of Schubert-type involving
linear subspaces of any dimension turn out to be maximal by [Vak06]. It is announced in [BM07] that the
problem above is maximal for d = 2 and n = 3. We generalized this observation in [BP13b].

Theorem 3.61 ([BP13b, Theorem 1.1]) For n ≥ 2, l0, . . . , ln−2 ≥ 0 satisfying (3.1), there exists a
generic configuration x of real linear subspaces of RPn as above such that

NR
n (2; l0, . . . , ln−2, x) = GWCPn(2; l0, . . . , ln−2).

Let us say a few words about the proof of Theorem 3.61. Proposition 2.11 generalizes immediately
to the case of rational curves in RPn. Starting from this observation, the idea of Theorem 3.61 is
quite simple: we exhibit configurations x of complete tropical linear spaces, called well-ordered totally
decomposing configurations in [BP13b], such that all tropical conics passing through them have tropical
multiplicity 1. Since all complete tropical linear spaces are trivially approximable by real linear spaces
in RPn, Theorem 3.61 now follows from (generalized) Proposition 2.11. Floor decomposition of tropical
curves is the key ingredient in the construction of well-ordered totally decomposing configurations, since
it allows one to construct them by induction on the dimension of the ambient projective space. Note that
the proof of Theorem 3.61 also provides a proof of Sottile’s Theorem different from the original one, but
closely related to Vakil’s one.

One could also study maximality of more general real enumerative problems, for example by prescribing
tangency conditions with constraints. We refer the interested reader to [RTV97, Ber08, Sot, BBM14] for
some partial answers in this direction.

For example, next proposition in proved in [BBM14] by tropical and floor decomposition methods (see
also Chapter 5)).

Proposition 3.62 ([BBM14, Proposition 7.3]) For any 0 ≤ k ≤ 5, any d1 . . . , d5−k ≥ 1, and any
g1 . . . , g5−k ≥ 0, there exists a generic configuration of k points p1, . . . , pk in RP 2 and 5 − k immersed
real algebraic curves C1, . . . , C5−k with Ci of degree di and genus gi such that all conics passing through
p1, . . . , pk and tangent to C1, . . . , C5−k are real.

The question of existence of non-trivial lower bounds for the numbersNR
n (d; l0, . . . , ln−2, x) is also a very

important and difficult problem about which not so much is known. Welschinger type invariants provide
such non-trivial lower bounds in some cases [Wel05a, Wel05b, Sol06, Geo13]. In the case of enumeration
of lines (and more generally in the enumeration of real linear spaces), the existence of some non-trivial
lower bounds has been proved by Gabrielov and Eremenko in [EG02]. See also [OT14, FK13] for a related
discussion. To our knowledge, the exact determination of the minimal value of NR

n (d; l0, . . . , ln−2, x) (when
non-trivial) is known so far only in the cases n = 2, d = 3 ([DK00]) and d = 4 ([Rey]), and in the cases
d = 1 and li = 0 for i ≤ n− 3 ([EG02]).

The technique used in [BP13b] should apply to prove the maximality of other enumerative problems.
For example, is it true that enumerative problems involving smooth curves in projective spaces subject to
simple incidence conditions are maximally real?
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3.3.4 (Piecewise)-polynomiality of Gromov-Witten invariants

Fomin and Mikhalkin used floor diagrams in [FM10] to give a proof of Göttsche conjecture in the case
of CP 2: for a fixed δ, the numbers GWCP 2,

(d−1)(d−2)
2 −δ(d) are given by a polynomial for d large enough.

This work generated many developments (see for example [Blo11, AB13, BCK13, Liu13, LO14, BG14]),
in particular in the case of singular surfaces, which are à priori outside the realm of Göttsche conjecture
(see [AB13, LO14]).

Meanwhile, Cavalieri, Johnson, and Markwig used tropical curves in [CJM10, CJM11] to study piecewise-
polynomiality of the so-called double Hurwitz numbers. Ardila gave in [Ard] an alternative proof of the
piecewise-polynomiality of double Hurwitz numbers, based on the De Concini-Procesi-Vergne theory of re-
markable spaces. This theory turns out in particular to be an efficient tool to prove piecewise-polynomiality
of certain functions.

In collaboration with Ardila, we generalized this piecewise-polynomiality of double Hurwitz numbers to
double Gromov-Witten invariant of Hirzebruch surfaces. The basic observation is that the tropical count
of double Hurwitz numbers performed in [CJM10] is nothing but a floor diagram count in dimension 1.
This remark being made, it is then immediate that Ardila’s approach [Ard] extends to the 2-dimensional
case.

In order to give a rigorous statement, we need first to introduce some notations. Let E and B be two
non-singular irreducible algebraic curves in Σn such that [B]2 = −[E]2 = −n and [B] · [E] = 0 (note that
there is no choice for E if n > 0). Let us fix four non-negative integer numbers a, b, n, and g, and four

sequences of non-negative integer numbers α, α̃, β, β̃ ∈ Z∞≥0 such that

Iα+ Iβ = an+ b and Iα̃+ Iβ̃ = b.

We define l = 2a+ g + Iβ + Iβ̃ − 1. Next, let us choose a generic configuration

x = {q1
1 , . . . , q

1
α1
, . . . , qi1, . . . , q

i
αi , . . . , p1, . . . , pl, q̃

1
1 , . . . , q̃

1
α̃1
, . . . , q̃i1, . . . , q̃

i
α̃i
, . . .}

of l + Iα+ Iα̃ points in Σn such that qij ∈ B, q̃ij ∈ E, and pi ∈ Σ \ (B ∪ E).

We denote by GWα,β,α̃,β̃
Σn

(a, b, g) the number of irreducible complex algebraic curves C in Σn of bidegree
(a, b) and genus g such that

1. x ⊂ C;

2. C has order of contact i with B at qij , and has βi other (non-prescribed) points with order of contact
i with B;

3. C has order of contact i with E at q̃ij , and has β̃i other (non-prescribed) points with order of contact
i with E.

This number is finite and does not depend on the chosen generic configuration x. We call this number
a double Gromov-Witten invariant of Σn in reference to double Hurwitz numbers.

Let us encode these invariants in some function. Let us fix a, n, and g as above, and let us also fix two
additional non-negative integer numbers n1 and n2. Thanks to these data we define

Λ = {(x1, . . . , xn1
, y1, . . . , yn2

) ∈ Zn1 × Zn2 |
∑

xi +
∑

yi = an} ⊂ Rn1 × Rn2 .

Given an element (x1, . . . , xn1
, y1, . . . , yn2

) of Λ, we denote by αi the number of elements xj equal to i,

by βi the number of elements yj equal to i, by α̃i the number of elements xj equal to −i, and by β̃i the
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number of elements yj equal to −i. Then we get four sequences α = (αi)i≥1, β = (βi)i≥1, α̃ = (α̃i)i≥1,

and β̃ = (β̃i)i≥1 in Z∞≥0. By setting b =
∑

(α̃i + β̃i), we thus get a function

Fa,n,g,n1,n2 : Λ −→ Z
(x, y) 7−→ GWα,β,α̃,β̃

Σn
(a, b, g)

.

Next theorem is the main result of [AB].

Theorem 3.63 ([AB]) For any a, n, g, n1, and n2, the function Fa,n,g,n1,n2
is piecewise polynomial.

It would be interesting to generalize Theorem 3.63 to refined Severi degrees.
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Chapter 4

Three surface degenerations

In this chapter we provide three examples of applications of surface degenerations to enumerative geometry.
By degenerating a symplectic 4-manifold to a nodal variety, we prove in Section 4.1 the vanishing of

a large part of Welschinger invariants of symplectic 4-manifolds (Theorem 4.1). We also give formulas
computing Welschinger invariants of a symplectic 4-manifold out of the enumeration of real curves in any
of its nodal degeneration (Theorem 4.6). This is a joint work with Puignau which appeared in [BP14].

By degenerating a Del Pezzo surface to CP 2 blown up at points lying on a smooth conic, we reduce in
Section 4.2 the computation of absolute invariants of Del Pezzo surfaces to the combinatorial enumeration
of floor diagrams relative to a conic introduced in Section 3.2.2 (Theorems 4.17, 4.20, 4.25, and 4.27).
Since the complex structure on Del Pezzo surfaces is generic regarding the problems addressed in this
memoir, we chose in this section to work in the algebraic category, and to use Li’s degeneration formula.
Nevertheless the whole section should be easily translated in the symplectic setting using symplectic sum
formulas. This work appeared in [Bru14].

By degenerating the Hirzebruch surface Σn to Σn+2, we relate in Section 4.3 complex enumerative
invariants of these two surfaces (Theorem 4.36). This generalizes Abramovich-Bertram-Vakil’s formula in
the case n = 0. Our approach is tropical: a tropical counterpart of Kodaira’s deformation of Hirzebruch
surfaces combined with a suitable correspondence theorem (Theorem 4.40). This is a joint work with
Markwig which appeared in [BM13].

4.1 Contraction of real Lagrangian spheres in symplectic 4-manifolds

In [BP14], we established the vanishing of a large part of Welschinger invariants of symplectic 4-manifolds,
as well as the sign of WXR,L(d, s) when RX is disconnected. We also specialized our results to the case of
real algebraic rational surfaces, where all necessary homology groups can easily be computed.

Main statements are given in Section 4.1.1. These latter are deduced from more specific statements
given in Section 4.1.2. Finally we give some hint about their proofs in Section 4.1.2.

4.1.1 Main statements

Let XR = (X,ω, τ) be a real symplectic 4-manifolds. A real Lagrangian sphere of XR is a Lagrangian
sphere globally invariant under τ . Two disjoint surfaces S and S′ in X are said to be connected by a chain
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of real Lagrangian spheres if there exists real Lagrangian spheres S1, . . . , Sk in X such that Si ∩ Sj = ∅ is
|i− j| ≥ 2, and Si and Si+1 intersect transversely in a single point, as well as S and S0, and S′ and Sk.

Theorem 4.1 ([BP14, Theorem 1]) Let XR be a real symplectic 4-manifold, and suppose that F ∈
H2(X \ L;Z/2Z) has a representative which is connected to L by a chain of real Lagrangian spheres.

1. If r ≥ 2, then
WXR,L,F (d, s) = 0.

2. If r = 1 and c1(X) · d ≥ 2, then

2
c1(X)·d−4

2 | WXR,L,F (d, s).

If in addition F = [RX \ L], then

(−1)
d2−c1(X)·d+2

2 WXR,L(d, s) ≥ 0.

The invariant WXR,L,0(d, s) does not seem to satisfy a vanishing statement analogous to Theorem
4.1(1) (see Examples 4.23 and 4.32, or [IKS13b, IKS13a, Bru14]), implying that the set C(d, x, J) is
usually non-empty. Theorem 4.1(2) partially generalizes [Wel07, Theorems 1.1, 2.1, 2.2, and 2.3].

Theorem 4.1 can be specialized to real algebraic rational surfaces, whose classification is well known
(see [Sil89, Kol97] for example). A real algebraic rational surface is always implicitly assumed to be
equipped with some Kähler form.

Let G be the subgroup of the τ -invariant classes in H2(X \ L;Z/2Z) generated by the kernel of the
natural map H2(X \ L;Z/2Z) → H2(X;Z/2Z) and by the classes realized by real symplectic curves.
We proved in [BP14, Propositions 8 and 9] that WXR,L,F and WXR,L,F ′ are equal in absolute value if
F − F ′ ∈ G. Denote by H(XR, L) the group of τ -invariant classes in H2(X \ L;Z/2Z) quotiented by G.
All groups H(XR, L) are computed in the case of real algebraic rational surfaces in [BP14, Section 4]. In
particular, we prove in [BP14, Proposition 4] that they only depend on a minimal model of XR and on
the choice of L.

Theorem 4.2 ([BP14, Theorem 2]) Let XR be a real symplectic 4-manifold equal, up to deformation
and equivariant symplectomorphism, to a real algebraic rational surface, and suppose that F is non-zero
in H(XR, L). Then the conclusions of Theorem 4.1 hold in the following cases:

• XR is obtained from a minimal model by blowing up pairs of complex conjugated points and real
points on at most two connected components of RX, one of them being L;

• XR is a Del Pezzo surface;

• F = [RX \ L].

Remark 4.3 In a burst of enthusiasm, we forgot in [BP13a, Proposition 3.3] the assumption that XR
has to be symplectomorphic/deformation equivalent to a real algebraic rational surface.

Theorem 4.2 follows from the classification of real algebraic rational surfaces and Theorem 4.1, which in
its turn is a direct consequence of Theorem 4.4 and Corollary 4.7 below. As mentioned in the introduction,
our strategy is to degenerate XR into a reducible real symplectic manifold YR, and to relate enumeration
of curves in YR and in XR. This degeneration can be thought of as a degeneration of XR to a real nodal
symplectic manifold, and can be described into two equivalent ways:

• the contraction of a real Lagrangian sphere SV by stretching the neck of a τ -compatible almost
complex structure in a neighborhood of SV , see [EGH00, Wel07];
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• the symplectic sum of XR and the normal bundle of real Lagrangian sphere, see [IP04].

In particular, Corollary 4.7 follows from Theorem 4.6, which can be seen as a real version of Abramovich-
Bertram-Vakil formula [AB01, Theorem 3.1.1], [Vak00a, Theorem 4.5]. Another but related treatment
of contraction of Lagrangian spheres contained in RX has previously been proposed by Welschinger in
[Wel07]. In this section, we adopt the symplectic sum description of the degeneration of XR to YR.

4.1.2 Auxiliary statements

In this section, we denote by X0 = CP 1 × CP 1, by ωFS the Fubini-Study form on CPn, and by l1 and
l2 respectively the homology classes [CP 1 × {0}] and [{0} ×CP 1] in H2(X0;Z). Recall that H2(X0;Z) is
the free abelian group generated by l1 and l2. Up to conjugation by an automorphism, there exist four
different real structures on (CP 1×CP 1, ωFS ×ωFS), and the class l1 + l2 is invariant for exactly three of
them, see for example [Sil89, Kol97]. These latter are given in coordinate by:

• τhy(z, w) = (z, w), RXhy = S1 × S1;

• τel(z, w) = (w, z), RXel = S2;

• τem(z, w) = (− 1
z ,−

1
w ), RXem = ∅.

Note that τhy and τem act trivially on H2(X0;Z/2Z), while τel exchange the classes l1 and l2. Note
also, with the convention that χ(∅) = 0, that

χ(RXhy) = χ(RXem) = 0, and χ(RXel) = 2.

4.1.2.1 Vanishing Lagrangian spheres

A class V in H2(X;Z/2Z) is called a real vanishing cycle if it can be represented by a real Lagrangian
sphere SV . By stretching the neck of a τ -compatible almost complex structure in a neighborhood of SV ,
one decomposes X into the union of X \SV and T ∗SV . This operation can be thought of as a degeneration
of XR to a real nodal symplectic manifold for which V is precisely the vanishing cycle. Equivalently, the
class V is a real vanishing cycle if and only if, up to deformation, XR can be represented as the real
symplectic sum of two real symplectic manifolds (X1, ω1, τ1) and (X0, ωFS × ωFS , τ0) along an embedded
symplectic sphere E of self-intersection −2 in X1 (hence of self-intersection 2 in X0) where:

• E is real and realizes the class l1 + l2 in H2(X0;Z);

• V is represented by the deformation in X of a representative of the non-trivial class in H2(X0 \
E;Z/2Z).

By abuse, we still denote by V the non-trivial class in H2(X0 \ E;Z/2Z). We denote by X] the union
of (X1, ω1, τ1) and (X0, ωFS × ωFS , τ0) along E, by L] the degeneration of L as XR degenerates to X],
and by Li = L] ∩Xi. The summand (X0, ωFS × ωFS , τ0) of X] corresponds to the compactified normal
bundle of E in X, i.e. to P(NE/X ⊕C). In particular, the homology groups H2(X;Z) and H2(X1;Z) are
canonically identified, and we always implicitly use this identification.

Let F be a τ -invariant representative of a τ -invariant class F ∈ H2(X] \ L];Z/2Z), and define F0 =
F ∩X0. Note that by construction we have ∂F0 ⊂ E. We always assume that F satisfies the following
conditions:

• either F ∩ RE = ∅, or there exists a neighborhood U of RE in X] such that F ∩ U ⊂ RX];

• one of the two following assumptions holds:
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(H1) F0 ∪ L0 is a cycle representing the class γV in H2(X0;Z/2Z);

(H2) τ0 = τel and F0 ∪ L0 = D ∪ Γ, where D is a τ -invariant disk with ∂D ⊂ E, and Γ is a cycle
representing the class γV in H2(X0;Z/2Z).

Next theorem is a key ingredient in the proof of Theorem 4.1.

Theorem 4.4 ([BP14, Theorem 3]) Suppose that L0 is a disk and that RX0 ⊂ L0 ∪ F0.

1. If r ≥ 2, then
WXR,L,F (d, s) = 0.

2. If r = 1 and c1(X) · d− 1 ≥ 2, then

2
c1(X)·d−4

2 | WXR,L,F (d, s) and (−1)
d2−c1(X)·d+2

2 WXR,L(d, s) ≥ 0.

Note that the assumptions of Theorem 4.4 imply that τ0 = τel and that F satisfies (H2). In the Lagrangian
sphere contraction presentation, the condition that L0 is a disk translates to the condition that L∩ SV is
reduced to a single point, at which the order of intersection is odd.

4.1.2.2 From X1 to X

Here we reduce the computation of Welschinger invariants of XR to enumeration of real J-holomorphic
curves in X1,R for a τ1-compatible almost complex structure J for which E is J-holomorphic.

Definition 4.5 Let J be a τ1-compatible almost complex structure on (X1, ω1, τ1) for which the curve E is
J-holomorphic, and let C1 be an immersed real rational J-holomorphic curve intersecting E transversely.
We denote by a the number of points in RC1 ∩ RE, by b the number of pairs of τ1-conjugated points in
C1 ∩E, and by mL1,F1

(C1) the number of intersection points of C1 with L1 ∪ F1 (recall that C1 has been
defined in Section 2.2). Finally, let k ≥ 0 be an integer.

1. If F satisfies assumption (H1), then we define

µ0
L],F0,k(C1) = (−1)mL1,F1

(C1)+γ(a+b)
∑

k=ak+2bk

(
a

ak

)(
b

bk

)
and

µ2
L],F0,k(C1) =

{
(−1)mL1,F1

(C1)+γb 2b if a = 0 and k = b;
0 otherwise.

2. If F satisfies assumption (H2), then we define

µL],F0,k(C1) =

{
(−1)mL1,F1

(C1) if k = a = b = 0;
0 otherwise

Let d ∈ H2(X;Z) and r, s ∈ Z≥0 such that

c1(X) · d− 1 = r + 2s.

Choose a configuration x made of r points in L1 and s pairs of τ -conjugated points in X1 \ RX1. Let J
be a τ1-compatible almost complex structure for which E is J-holomorphic.

For each integer k ≥ 0, we denote by C1,k(d, x, J) the set of all irreducible rational real J-holomorphic
curves in (X1, ω1, τ1) passing through all points in x, realizing the class d − k[E], and such that L1

contains the 1-dimensional part of RC1. For a generic choice of J satisfying the above conditions, the
set C1,k(d, x, J) is finite, and any curve in C1,k(d, x, J) is nodal and intersects E transversely. Moreover
C1,k(d, x, J) is non-empty only for finitely many values of k.
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Theorem 4.6 ([BP14, Theorem 4]) Suppose that L1 6= ∅. Then for a generic choice of J , the two
following claims hold.

1. If F satisfies assumption (H1), then, with the convention that χ(∅) = 0, one has

WXR,L,F (d, s) =
∑
k≥0

∑
C1∈C1,k(d,x,J)

µ
χ(RX0)
L],F0,k

(C1).

2. If F satisfies assumption (H2), then one has

WXR,L,F (d, s) =
∑

C1∈C1,0(d,x,J)

µL],F0,0(C1).

Applying Theorem 4.6(1) with F = [RX \ L], one obtains [BP13a, Theorem 2.2]. Some instances of
Theorem 4.6(1) when RX0 = S1 × S1 have been known for sometimes, e.g. [Bru, Bru11, Kha10, RS].
Since the publication of [BP13a], an algebro-geometric proof of Theorem 4.6(1) appeared in [Bru14] and
in [IKS13a] in the particular cases when X is a Del Pezzo surface of degree two or more. Theorem 4.6(2)
immediately implies the following corollary.

Corollary 4.7 Suppose that V ∈ H2(X \ L;Z/2Z) and that F satisfies assumption (H2). Then

WXR,L,F (d, s) = WXR,L,F+V (d, s).

4.1.2.3 Applications of Theorem 4.6(1)

We do not explicitly use Theorem 4.6(1) in the proof of Theorem 4.1, nevertheless its proof is almost
contained in the proof of Theorem 4.6(2). Theorem 4.6(1) has many interesting applications, in particular
in explicit computations of Welschinger invariants, see [Bru14, IKS13a]. We present here two other
consequences.

We first relate some tropical Welschinger invariants to genuine Welschinger invariants of the quadric
ellipsoid. We refer to [IKS09] for the definition of tropical Welschinger invariants. The only homology
classes of (X0, ωFS × ωFS , τel) realized by real curves are of the form dl1 + dl2 with d ∈ Z>0. We denote
by WTΣ2

(d) the irreducible tropical Welschinger invariant of TΣ2 for rational curves with Newton polygon
the triangle with vertices (0, 0), (0, d), and (2d, 0).

Proposition 4.8 ([BP14, Proposition 1]) For any d ∈ Z>0, we have

WX0,el
(dl1 + dl2) = WTΣ2

(d).

It is proved in [IKS04] that given a toric Del Pezzo surface X equipped with its tautological real toric
structure and a class d ∈ H2(X;Z), we have

WXR(d, 0) ≥WXR(d, 1).

The same idea used in the proof of Proposition 4.8 combined with Theorem 4.6 and Theorem 3.32 provide
a natural generalization of this formula in the particular cases when X is a Del Pezzo surface of degree at
least three.

Proposition 4.9 ([BP14, Proposition 2]) Let (X,ω) be a symplectic 4-manifold symplectomorphic/deformation
equivalent to a Del Pezzo surface of degree at least three.

If XR = (X,ω, τ1) and X ′R = (X,ω, τ2) are two real structures on (X,ω), then for any d ∈ H2(X;Z)
one has

WXR,L1
(d, 0) ≥WX′R,L2

(d, 0) ≥ 0 if χ(RX) ≤ χ(RX ′).
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The non-negativity of all Welschinger invariants of Del Pezzo surfaces of degree 3 when s = 0 has been
first established in [IKS13b]. Note that Proposition 4.9 does not generalize immediately to any symplectic
4-manifold. Indeed, according to [ABLdM11, Section 7.3] one has WCP 2,RP 2(9, 12) < WCP 2,RP 2(9, 13), i.e.
Proposition 4.9 does not hold in the case of CP 2 blown up in 26 points.

4.1.3 Elements of the proof of Theorems 4.4 and 4.6

4.1.3.1 Symplectic sums

Here we briefly describe a very particular case of the symplectic sum formula from [IP04]. In this section
we do not assume that X0 = CP 1 × CP 1.

Let (X0, ω0) and (X1, ω1) be two symplectic connected compact 4-manifolds, and let φi : E → Xi,
i = 0, 1, be two symplectic embeddings of a symplectic sphere such that the self-intersection of the φi(E)’s
in Xi are opposite to each other. By abuse, we still denote by E the image of φi(E) in Xi. The condition
on the self-intersections is equivalent to the existence of a symplectic bundle isomorphism ψ between the
normal bundle of E in X0 and the dual of the normal bundle of E in X1.

Out of these data, one produces a family of symplectic 4-manifolds (Yt, ωt) parametrized by a small
complex number t in C∗. All those 4-manifolds are deformation equivalent, and are called symplectic
sums of (X0, ω0) and (X1, ω1) along E. Next theorem says that this family can be seen as a symplectic
deformation of the singular symplectic manifold X] = X0 ∪EX1 obtained by gluing (X0, ω0) and (X1, ω1)
along E.

Proposition 4.10 ([IP04, Theorem 2.1]) There exists a symplectic 6-manifold (Y, ωY ) and a symplec-
tic fibration π : Y → D over a disk D ⊂ C such that the central fiber π−1(0) is the singular symplectic
manifold X], and π−1(t) = (Yt, ωt) for t 6= 0.

Note that the map π provides an identification of all homology groups Hi(π
−1(t);Z) with t ∈ D.

Let d ∈ H2(Yt;Z), and choose x(t) a set of c1(X) · d − 1 symplectic sections D → Y such that
x(0) ∩ E = ∅. Choose an almost complex structure J on Y tamed by ωY , which restricts to an almost
complex structure Jt on Yt tamed by ωt on each fiber π−1(t), and generic with respect to all choices we
made.

Define C(d, x(0), J0) to be the set
{
f : C → X]

}
of limits, as stable maps, of maps in C(d, x(t), Jt)

as t goes to 0, and C∗(d, x(0), J0) = {f(C) | f ∈ C(d, x(0), J0)}. If C1, . . . , Ck denote the irreducible
components of C and if none of them is entirely mapped to E, we define

µ(f) =
∏

p∈f −1
(E)

µp,

where µp is the order of contact of C and E at p.

Proposition 4.11 ([BP14, Proposition 6]) For a generic J0, the set C∗(d, x(0), J0) is finite, and only
depends on x(0) and J0. Moreover if f : C → X] is an element of C(d, x(0), J0), then no irreducible
component of C is entirely mapped to E. If in addition f restricted to any irreducible component of C is
simple, then f is the limit of exactly µ(f) elements of C(d, x(t), Jt) as t goes to 0.

Suppose now that the disc D from Proposition 4.10 is equipped with the standard complex conjugation.
Let us assume now that (Y, ωY ) is endowed with a real structure τY such that the map π : Y → D is real,
and let us choose the set of sections x : D → Y to be real. Note that each fiber π−1(t) comes naturally
equipped with a real structure τt.
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Let us fix a real element f : C → X] of C(d, x(0), J0). Given a pair {q, τ0(q)} of elements in f −1(E),
we define µ{q,τ(q)} = µq (note that µq = µτ(q) so µq,τ(q) is well defined). We denote by ξ0 the product of

the µ{q,τ(q)} where {q, τ(q)} ranges over all pairs of conjugated elements in f −1(E).
If RE 6= ∅ and given p ∈ RE, choose a neighborhood Up of p in RX] homeomorphic to the union

of two disks. The set Up \ RE has four connected components Up,1, Up,2 ⊂ RX0 and Up,3, Up,4 ⊂ RX1,
labeled so that when smoothing RX] to RYt with t ∈ R∗, the components Up,1 and Up,3 on one hand
hand, and Up,2 and Up,4 on the other hand, glue together, see Figure 4.1a. Denote respectively by Up,1,3
and Up,2,4 a deformation of Up,1 ∪ Up,3 and Up,2 ∪ Up,4 in RYt. Given q ∈ R

(
f −1(E)

)
, denote by Uq a

p,4V

p,1V

p,3V

p,2V

p,1,3V

p,2.4V

{

μ-1
2 {

μ-1
2

a) b)

Figure 4.1: Real deformations of a real map f : C → X]

small neighborhood of q in RC. If µq is even, define the integer ξq as follows:

• if f(Uq) ⊂ Uf(q),1 ∪ Uf(q),4 or f(Uq) ⊂ Uf(q),2 ∪ Uf(q),3, then ξq = 0;

• if f(Uq) ⊂ Uf(q),1 ∪ Uf(q),3 or f(Uq) ⊂ Uf(q),2 ∪ Uf(q),4, then ξq = 2.

We define ξ(f) as the product of ξ0 with all the ξq’s where q ranges over all points in R
(
f −1(E)

)
with µq even.

Proposition 4.12 ([BP14, Proposition 7]) Suppose that the restriction of f to any component of C
is simple. Then the real map f is the limit of exactly ξ(f) real maps in C(d, x(t), Jt). Moreover for each
q ∈ R

(
f −1(E)

)
, one has

• if µq is odd, then any real deformation of f has exactly µq − 1 solitary nodes in Uf(q),1,3 ∪ Uf(q),2,4

(see Figure 4.1b);

• if µq is even, then half of the real deformations of f have exactly
µq−2

2 solitary nodes in Uf(q),1,3 and
µq
2 solitary nodes in Uf(q),2,4, while the other half of real deformations of f have no solitary nodes

in Uf(q),1,3 ∪ Uf(q),2,4 (see Figure 4.2).

Note that the second part of Proposition 4.12 is empty if RE = ∅ or ξ(f) = 0.

4.1.3.2 Application

Here we apply results from Section 4.1.3.1 to the case exposed in Section 4.1.2.1, i.e. when (X0, ω0, τ0) =
(CP 1 × CP 1, ωFS × ωFS , τ) and [E] = l1 + l2. As explained above, the summand (X0, ω0, τ0) of X]

corresponds to P(NE/X ⊕ C). Without loss of generality, we may assume that l2 is the class realized by

the compactification of a fiber of NE/X . In particular if f : C → X] is an element of C(d, x(0), J0), and if

Ci is the union of the irreducible components of C mapped to Xi, then there exists k ∈ Z≥0 such that

f∗[C1] = d− k[E] and f∗[C0] = kl1 + (d · [E] + k)l2. (4.1)
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Figure 4.2: Real deformations of a real map f : C → X], continued

If F ∩ RE = ∅, then by perturbing F if necessary, we may assume that f(C) ∩ F ∩ E = ∅ for all
f ∈ C(d, x(0), J0)

We prove Theorem 4.4 by choosing the sections x(t) in such a way that x(0) ∩X0 is reduced a single
point p0, and that x(0) ∩X1 6= ∅. In this case, Theorem 4.4 follows easily from Theorem 4.12 and next
lemma.

Lemma 4.13 ([BP14, Lemma 3]) Suppose that |x(0)∩X0| = 1 and x(0)∩X1 6= ∅. Let f : C → X] be

an element of C(d, x(0), J0). The image of the irreducible component C
′

of C0 whose image contains p0

realizes either a class li or the class l1 + l2.

• If this class is li, then the curve C1 is irreducible and f |C1
is an element of Cu1,(d+2k−1)u1(d −

k[E], x(0) ∪ xE , J0), where xE = f(C
′
) ∩ E.

• If this class is l1 + l2, then f |C′ is an element of Cα,0(l1 + l2, {p0} ∪ xE , J0), where xE = f(C1)∩E,

and α = 2u1 or α = u2. The curve C1 has two irreducible components in the former case, and is
irreducible in the latter case.

All the other irreducible components of C0 realize a class li, and f restricts to a simple map on each
irreducible component of C.

We prove Theorem 4.6 by choosing the sections x(t) in such a way that x(0) ∩X0 = ∅. In this case,
Theorem 4.6 follows easily from Theorem 4.12 and next lemma. We define Cf to be the set of elements

f
′

: C
′ → X] in C(d, x(0), J0) such that f |C1

= f
′
|C′1 .

Lemma 4.14 ([BP14, Lemmas 4 and 5]) Suppose that x(0)∩X0 = ∅. Let f : C → X] be an element
of C(d, x(0), J0). Then the curve C1 is irreducible, and the image of any irreducible components of C0

realizes a class li. In particular, f is the limit of a unique element of C(d, x(t), Jt) as t goes to 0.

Moreover, if f∗[C1] = d− k[E], then Cf has exactly
(
d·[E]+2k

k

)
elements.

4.1.4 Further comments

4.1.4.1 Symplectic sum and real WDVV equations

A real version of the WDVV equations for rational 4-symplectic manifolds have been proposed by Solomon
[Sol]. Those equations provide many relations among Welschinger invariants of a given real 4-symplectic
manifold, that hopefully reduce the computation of all invariants to the computation of finitely many
simple cases. This program has been completed in [HS12] in the case of rational surfaces equipped with
a standard real structure, i.e. induced by the standard real structure on CP 2 via the blowing up map.
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In a work in progress in collaboration with Solomon, we combine the methods used in [BP14] and real
WDVV equations to cover the case of all remaining real rational algebraic surfaces. At the present
moment, this project has been completed for all minimal real rational algebraic surfaces, except for the
minimal Del Pezzo surface of degree 1. It is worth mentioning that for the minimal Del Pezzo surface of
degree 2, Solomon’s equations alone are not sufficient to reduce to finitely many simple cases. However
the combination of Solomon’s equations together with the vanishing ensured by Theorem 4.2 allows this
reduction.

As a side remark, we stress that if real WDVV equations are definitely better from a computational
point of view than floor diagrams, it seems nevertheless very difficult to extract from them qualitative in-
formation about Welschinger invariants. A real WDVV equation in the case of odd dimensional projective
spaces has also been proposed by Georgieva and Zinger [GZ13].

4.1.4.2 Sign of Welschinger invariants

The sign of Welschinger invariants seem to obey to some mysterious rule related to the topology of the
real part of the ambient manifold. Theorem 4.2 with [Wel07, IKS09, IKS13b, Bru14] explicit this rule in
a few cases for F = [RX \L], namely when L = T 2, or S2 and r = 0, 1, when X = X8 and s is very small,
or when X is a real rational algebraic surface with disconnected real part and r = 1. Unfortunately, the
rule controlling the sign of Welschinger invariants in its full generality still remains mysterious.

As an example, let us describe how the signs of Welschinger invariants of CP 2 seem to behave: as r
goes from 3d− 1 to 0 or 1, the numbers WCP 2(d, s) are first positive, and starting from some mysterious
threshold, have an alternating sign. This observation has been made experimentally using Solomon’s real
version of WDVV equations for CP 2.

4.2 Gromov-Witten and Welschinger invariants of Del Pezzo
surfaces

In this section, we denote by Xn the complex projective plane blown up at a generic configuration of
n ≤ 8 points. Recall that X̃n denotes the surface CP 2 blown up at n points located on a smooth conic.
We further denote by X̃n,1 the surface CP 2 blown up at n points located on a smooth conic, and at an
extra point not on this conic. In the last two cases, we denote by E the strict transform of the conic in
X̃n and X̃n,1.

We reduce in Theorems 4.17 and 4.20 (resp. Theorems 4.25 and 4.27) the computation of absolute

invariants of X7 (resp. X8) to enumeration of curves in X̃8 (resp. X̃8,1), which in their turn have been
reduced to enumeration of floor diagrams in Theorems 3.27 and 3.32 (resp. to a Caporaso-Harris type
formula in [SS13, IKS13a]) We detail here only the case of X7. The case of X8 follows the same strategy,
and we will just mention briefly how to adapt the method used in the case of X7.

We describe in Section 4.2.1 the degeneration of X7 we consider, and then sate the main theorems in
Sections 4.2.2 and 4.2.3. We finally give some hint of the proofs in Section 4.2.4, and briefly address the
case of X8 in Section 4.2.5. Note that motivated by Theorem 4.2, we only consider the cases of Welschinger
invariants with F = 0 or F = [RX \ L].

We denote by X7(κ) with κ = 0, . . . , 3, and by X±7 (4) the surface X7 equipped with the real structure
such that:

RX7(κ) = RP 2
7−2κ, RX−7 (4) = RP 2 t RP 2, RX+

7 (4) = S2 t RP 2
1 .

Recall that these are all real structures on X7 with a non-orientable real part, and represent half of the
possible real structures on X7. Note that

χ(RX±7 (κ)) = −6 + 2κ.
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Recall that X̃n(κ) denotes the surface X̃n equipped with the real structure induced by the real structure
on CP 2 via the blow up map of n − 2κ real points and κ pairs of complex conjugated points on a real
conic with non-empty real part. Recall also that when n = 2κ, the connected component of RX̃n(κ) \RE
with Euler characteristic ε ∈ {0, 1} is denoted by L̃ε.

4.2.1 Degeneration of X7

Theorems 4.17 and 4.20 are obtained by applying Li’s degeneration formula, and its real counterpart, to
the degeneration of X7 described in next proposition, together with a set of sections x : C→ Ỹ satisfying
x(0) ⊂ X̃6 \ X̃2. The point of considering this degeneration is that no non-trivial covering appears.

Proposition 4.15 There exists a flat degeneration π : Ỹ → C of X7 with π−1(0) = X̃6 ∪ X̃2, where

X̃6 ∩ X̃2 is the distinguished curve E in both X̃6 and X̃2.

We denote by p7 and p8 the points on E corresponding to the two blown up points in X̃2. Then one
can choose π : Ỹ → C endowed with a real structure such that one of the following holds:

• Rπ−1(0) = X̃6(κ) ∪ X̃2(0) with 0 ≤ κ ≤ 3; in this case the two points p7 and p8 are real, and
Rπ−1(t) = X7(κ) for t 6= 0.

• Rπ−1(0) = X̃6(κ) ∪ X̃2(1) with 0 ≤ κ ≤ 2; in this case the two points p7 and p8 are complex
conjugated, and Rπ−1(t) = X7(κ+ 1) for t 6= 0.

• Rπ−1(0) = X̃6(3) ∪ X̃2(1) and the component L̃ε of X̃2(1) is glued to the component L̃0 of X̃6(3)
in the smoothing of Rπ−1(0); in this case the two points p7 and p8 are complex conjugated, and for
t 6= 0 one has Rπ−1(t) = X−7 (4) if ε = 1, and Rπ−1(t) = X+

7 (4) if ε = 0.

4.2.2 Gromov-Witten invariants of X7

Some additional notation are needed to state Theorem 4.17. Given a graph Γ, denote by λv,v′ the number
of edges between the distinct vertices v and v′ of Γ, by λv,v twice the number of loops of Γ based at the
vertex v, and by k◦Γ the number of edges of Γ.

In this section, we consider curves in X7 and X̃8. In order to avoid confusions, let us use the following
notation: D denotes the pullback of a generic line in both surfaces, and E1, . . . E7 (resp. Ẽ1, . . . Ẽ8) denote

the (−1)-curves coming from the presentation of X7 (resp. X̃8) as a blow up of CP 2 (resp. of CP 2 at

height points on a conic). Finally, let V8 ⊂ H2(X̃8;Z) \ {0} be the set of classes d 6= lẼi with l ≥ 2 or
i = 7, 8.

Definition 4.16 A X7-graph is a connected graph Γ together with three quantities dv ∈ V8, gv ∈ Z≥0,
and βv = βv,1u1 + βv,2u2 ∈ Z∞≥0 associated to each vertex v of Γ, such that Iβv = dv · [E].

An isomorphism between X7-graphs is an isomorphism of graphs preserving the three quantities asso-
ciated to each vertex.

An X7-graphs is always considered up to isomorphism. Given a X7-graph Γ, define

dΓ =
∑

v∈Vert(Γ)

dv, and βΓ =
∑

v∈Vert(Γ)

βv.

Given g, k ∈ Z≥0 and d ∈ H2(X7;Z) such that d · [D] ≥ 1 (if not the corresponding Gromov-Witten
invariants are straightforward to compute), let S7(d, g, k) be the set of all pairs (Γ, PΓ) where
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• Γ is a X7-graph such that ∑
v∈Vert(Γ)

gv + b1(Γ) = g

and

d = (dΓ · [D] + 2k)[D]−
6∑
i=1

(
dΓ · [Ẽi] + k

)
[Ei]−

(
k◦Γ + βΓ,2 + dΓ · ([Ẽ7] + [Ẽ8])

)
[E7];

• PΓ =
⋃
v∈Vert(Γ) Uv is a partition of the set {1, . . . , c1(X7) · d− 1 + g} such that |Uv| = dv · [D]− 1 +

gv + |βv|.

Given (Γ, PΓ) ∈ S7(d, g, k), define

k◦◦ = k − βΓ,2 − k◦Γ − dΓ · [Ẽ7].

Denote by σ(Γ) the number of bijection of Vert(Γ) to itself which are induced by an automorphism of the
graph Γ. Define the following complex multiplicities for (Γ, PΓ) ∈ S7(d, g, k) and v ∈ Vert(Γ) (recall that
the invariants GWX̃8

have been defined in Section 3.2.2.1):

µC(v) = λv,v!!

(
βv,1

{λv,v′}v′∈Vert(Γ)

)
GW 0,βv

X̃8
(dv, gv),

and

µC(Γ, PΓ) =
IβΓ

σ(Γ)

(
βΓ,1 − 2k◦Γ

k◦◦

) ∏
v 6=v′∈Vert(Γ)

λv,v′ !
∏

v∈Vert(Γ)

µC(v).

Note that given d and g, there exists only finitely elements in
⋃
k≥0 S7(d, g, k) with a positive multi-

plicity. Also given (Γ, PΓ) ∈ S7(d, 0, k), we have λv,v′ ≤ 1 (resp. λv,v = 0) for each pair of distinct vertices
(resp. each vertex) of Γ.

Next theorem reduces the computation of GWX7 to the computation of GWX̃8
.

Theorem 4.17 ([Bru14, Theorem 6.5]) Let g ≥ 0 and d ∈ H2(X7;Z) such that d · [D] ≥ 1. Then one
has

GWX7
(d, g) =

∑
k≥0

∑
(Γ,PΓ)∈S7(d,g,k)

µC(Γ, PΓ).

Remark 4.18 We consider the degeneration Ỹ having in mind the enumeration real curves, see Section
4.2.3. If one is only interested in the computation of Gromov-Witten invariants of X7, then it is probably
simpler to consider the degeneration of X7 to X̃7 ∪ X̃1, the resulting formula being the same. In this
perspective, Theorem 4.17 is then analogous to [BM13, Theorem 2.9, Example 2.11], i.e. Theorem 4.36
specialized to the case n = 1.

Example 4.19 ([Bru14, Example 6.7]) Thanks to Theorems 4.17 and 3.27, we list in table 4.1 the
Gromov-Witten invariants GWX7

(2c1(X7), g). The value in the rational case has been first computed by
Göttsche and Pandharipande in [GP98, Section 5.2]. The cases of higher genus have been first treated
in [SS13]. The value GWX7(2c1(X7), 1) = 204 corrects the incorrect value announced in [SS13, Example
3.2].
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g 0 1 2 3
GWX7(2c1(X7), g) 576 204 26 1

Table 4.1: GWX7
(2c1(X7), g)

4.2.3 Welschinger invariants of X7

For κ = 0, . . . , 3, define the two involutions τ0
κ and τ1

κ on H2(X̃8;Z) as follows: τ0
κ (resp. τ1

κ) fixes the

elements [D] and [Ẽi] with i ∈ {2κ + 1, . . . , 8} (resp. i ∈ {2κ + 1, . . . , 6}), and exchanges the elements

[Ẽ2i−1] and [Ẽ2i] with i ∈ {1, . . . , κ} (resp. i ∈ {1, . . . , κ, 4}). These two involutions take into account

that for each real structure on X̃6, there are two possible real structures on X̃2, depending on the real
structure on π−1(0).

From now on, let us fix g = 0, an integer κ ∈ {0, . . . , 3}, and a class d ∈ H2(X7;Z). Set ℵ = c1(X7)·d−1
and A = {1, . . . ,ℵ}, and choose two integer r, s ≥ 0 such that ℵ = r + 2s. Define the involution ρs on A
as follows: ρs|{2i−1,2i} is the non-trivial transposition for 1 ≤ i ≤ s, and ρs|{2s+1,ℵ} = Id.

Given ε ∈ {0, 1}, denote by RSε7(d, k, s, κ) the set of triples (Γ, PΓ, τ) where

• (Γ, PΓ) ∈ S7(d, 0, k);

• τ : Γ → Γ is an involution such that for any vertex v of Γ, one has βv = βτ(v), dτ(v) = τ εκ(d), and
ρs(Uv) = Uτ(v);

• to each vertex v fixed by τ is associated a decomposition βv = β<v + 2β=v with β<v , β
=
v ∈ Z∞≥0.

Given (Γ, PΓ, τ) ∈ RSε7(d, k, s, κ), denote by σ(Γ, τ) the number of bijection of Vert(Γ) to itself which
are induced by an automorphism of the graph Γ commuting with τ . Note that τ = Id if s = 0. Denote
also by Vert=(Γ) (resp. k◦,=Γ ) the set of pairs of vertices (resp. the number of pairs of edges) exchanged

by τ , and by Vert<(Γ) (resp. k◦,<Γ ) the set of vertices (resp. the number of edges) fixed by τ . Next, define

β<Γ =
∑

v∈Vert<(Γ)

β<v , and β=Γ =
∑

v∈Vert<(Γ)

β=v +
∑

{v,v′}∈Vert=(Γ)

βv.

Let us associate different real multiplicities to elements of RSε7(d, k, κ), accounting all possible smoothings
of Rπ−1(0).

Given {v, v′} ∈ Vert=(Γ), define

µR({v, v′}) = (−1)dv·dv′
(

βv,1
{λv,v′′}v′′∈Vert(Γ)

)
GW 0,βv

X̃8(κ)
(dv, 0).

Let v ∈ Vert<(Γ). Denote respectively by rv and sv the number of points in Uv fixed by ρs and the
number of pairs of points in Uv exchanged by ρs. By definition we have |Uv| = rv + 2sv. Denote also by
k◦,=v the number of pairs of edges of Γ adjacent to v and exchanged by τ . Define (recall that the numbers
FW have been defined in Section 3.2.2.4)

µR,ε
s,κ(v) = 2k

◦,=
v

(
β<v,1

{λv,v′}v′∈Vert<(Γ)

)(
β=v,1

{λv,v′}{v′,v′′}∈Vert=(Γ)

)
FW

0,β<v ,0,β
=
v

X̃8(κ+ε)
(dεv, sv),

where d0
v = dv, and d1

v is obtained from dv by exchanging1 the coefficients of Ẽ2κ−1 and Ẽ7, and Ẽ2κ and

1This additional complication is purely formal and comes from the convention used to define the numbers FW in section
3.2.2.4.
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Ẽ8. Define also

ηRs,ε(v) = 2k
◦,=
v

(
β<v,1

{λv,v′}v′∈Vert<(Γ)

)(
β=v,1

{λv,v′}{v′,v′′}∈Vert=(Γ)

)
FW

0,β<v ,0,β
=
v

X̃8(4),ε
(dv, sv),

and

νRs,ε(v) = FW
0,β<v ,0,β

=
v

X̃8(4),ε,ε
(dv, sv).

Let RS0
7,m(d, k, s, κ) be the subset of RS0

7 (d, k, s, κ) formed by elements with β<Γ,2 = 0. Given

(Γ, PΓ, τ) ∈ RS0
7,m(d, k, s, κ), define the following multiplicity:

µR,0
s,κ(Γ, PΓ, τ) =

(−1)k
◦,=
Γ +β=Γ,2 Iβ

=
Γ

σ(Γ, τ)

∏
v∈Vert<(Γ)

µR,0
s,κ(v)

∏
{v,v′}∈Vert=(Γ)

µR({v, v′})×

×
∑

k◦◦=r′+2s′

(
β<Γ,1 − 2k◦,<Γ

r′

)(
β=Γ,1 − 2k◦,=Γ

s′

)
.

Let RS1
7,m(d, k, s, κ) be the subset of RS1

7 (d, k, s, κ) formed by elements with β<Γ = 2k◦,<Γ u1 and k◦◦ =

β=Γ,1 − 2k◦,=Γ . Given (Γ, PΓ, τ) ∈ RS1
7,m(d, k, s, κ), define the following multiplicity

µR,1
s,κ(Γ, PΓ, τ) =

(−1)k
◦,=
Γ (−2)|β

=
Γ |−2k◦,=Γ

σ(Γ, τ)

∏
v∈Vert<(Γ)

µR,1
s,κ(v)

∏
{v,v′}∈Vert=(Γ)

µR({v, v′}).

Note that RS1
7,m(d, k, s, 3) is composed of elements with β<Γ = k◦,<Γ = 0. Given (Γ, PΓ, τ) ∈ RS1

7,m(d, k, s, 3)
and ε ∈ {0, 1}, define the following multiplicity

ηRs,ε(Γ, PΓ, τ) =
(−1)k

◦,=
Γ (−2)|β

=
Γ |−2k◦,=Γ

σ(Γ, τ)

∏
v∈Vert<(Γ)

ηRs,ε(v)
∏

{v,v′}∈Vert=(Γ)

µR({v, v′}).

Let RS1
7,2(d, k, s, 3) (resp. RS1

7,3(d, k, s, 3)) be the subset of RS1
7 (d, k, s, 3) formed by elements with

k◦Γ = βΓ,1 = 0 (resp. k◦Γ = βΓ,1 = β<Γ,2 = 0). Note that any element of RS1
7,2(d, k, s, 3) or RS1

7,3(d, k, s, 3)
has a single vertex.

In the following theorem, the connected component of RX+
7 (4) with Euler characteristic ε is denoted

by Lε.

Theorem 4.20 ([Bru14, Theorem 6.8]) Let d ∈ H2(X7;Z) such that d · [D] ≥ 1, and r, s ∈ Z≥0 such
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that c1(X7) · d− 1 = r + 2s. Then one has

WX7(κ)(d, s) =
∑
k≥0

∑
(Γ,PΓ,τ)∈RS0

7,m(d,k,s,κ)

µR,0
s,κ(Γ, PΓ, τ) if κ ∈ {0, . . . , 3},

WX7(κ+1)(d, s) =
∑
k≥0

∑
(Γ,PΓ,τ)∈RS1

7,m(d,k,s,κ)

µR,1
s,κ(Γ, PΓ, τ) if κ ∈ {0, . . . , 2},

WX−7 (4),RP 2,RX−7 (4)(d, s) =
∑
k≥0

∑
(Γ,PΓ,τ)∈RS1

7,m(d,k,s,3)

ηRs,ε(Γ, PΓ, τ) ∀ε ∈ {0, 1},

WX+
7 (4),L2ε,RX+

7 (4)(d, s) =
∑
k≥0

∑
(Γ,PΓ,τ)∈RS1

7,m(d,k,s,3)

ηRs,ε(Γ, PΓ, τ) ∀ε ∈ {0, 1},

WX−7 (4),L1,L1
(d, s) =

∑
k≥0

∑
(Γ,PΓ,τ)∈RS1

7,2(d,k,s,3)

2β
<
Γ,2+β=Γ,2νRs,1(v),

WX−7 (4),L1,L1
(d, s) =

∑
k≥0

∑
(Γ,PΓ,τ)∈RS1

7,3(d,k,s,3)

(−2)β
=
Γ2 νRs,0(v),

WX+
7 (4),L0,L0

(d, s) =
∑
k≥0

∑
(Γ,PΓ,τ)∈RS1

7,2(d,k,s,3)

2β
<
Γ,2+β=Γ,2νRs,0(v),

WX+
7 (4),L2,L2

(d, s) =
∑
k≥0

∑
(Γ,PΓ,τ)∈RS1

7,3(d,k,s,3)

(−2)β
=
Γ2 νRs,1(v).

Combining Theorems 4.20 and 3.32, we obtain the following corollaries.

Corollary 4.21 ([Bru14, Corollary 6.9]) For any d ∈ H2(X7;Z), we have

WX+
7 (4),L0,L0

(d, 0) ≥WX+
7 (4),L2,L2

(d, 0) ≥ 0.

Moreover both invariant are divisible by 4[ d·[D]
2 ]−min(d·Ei)−1, as well as WX−7 (4),RP 2,RP 2(d, 0).

The non-negativity of WX+
7 (4),L0,L0

(d, 0) has been first established in [IKS13a].

Corollary 4.22 ([Bru14, Corollary 6.10]) For any d ∈ H2(X7;Z), we have

WX+
7 (4),L0,RX+

7 (4)(d, s) = WX+
7 (4),L2,RX+

7 (4)(d, s) = WX−7 (4),RP 2,RX−7 (4)(d, s).

Example 4.23 ([Bru14, Example 6.11]) Theorem 4.20 implies that Welschinger invariants of the real
surfaces X±7 (κ) are the one listed in Table 4.2. The invariants WX7(κ)(2c1(X7), s) have been first computed
in [HS12]. In addition to [Bru14], the invariants WX+

7 (4),Lε,Lε
(2c1(X7), 0) and WX−7 (4),RP 2,RP 2(2c1(X7), 0)

have also been computed in [IKS13a].

Recall that the invariant W(X,τ),L,L′(d, s) is said to be sharp if there exists a real configuration x
with s pairs of complex conjugated points such that |RC(d, 0, x)| = |W(X,τ),L,L′(d, s)|. When r = 0 or
1, Welschinger proved in [Wel07] the sharpness of W(X,τ),L(d, s) when L is homeomorphic to either T 2,
S2, or RP 2, with the additional assumption in the latter case that (X, τ) is CP 2 blown up in at most
three pairs of complex conjugated points. In the case of CP 2, one possible way to prove this result is by
degenerating CP 2 into the union of CP 2 and the normal bundle of a real conic with an empty real part.

It follows from Example 4.23 that WX+
7 (4),L0,RX+

7 (4)(2c1(X7), 1) is not sharp. This shows that [Wel07,

Theorem 1.1] does not extend to all real structures on X7. The methods used in the proof of Theorems
3.32 and 4.20 adapt without any problem to the case when r = 0 or 1 and E has an empty real part. In
particular, such adaptations allow one to extend [Wel07, Theorem 1.1] to the real surface X−7 (4).
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s\κ 0 1 2 3 4− 4+ 4+
L = RP 2

1 L = S2

0 224 128 64 24 0 0 0
1 132 68 28 4 -12 -12 -12

WX±7 (κ),L,RX±7 (κ)(2c1(X7), s)

s
0 32
1 12

s\ε 0 2
0 48 16
1 20 4

WX−7 (4),RP 2,RP 2(2c1(X7), s) WX+
7 (4),Lε,Lε

(2c1(X7), s)

Table 4.2: Welschinger invariants of X7 for the class 2c1(X7)

Proposition 4.24 ([Bru14, Proposition 8.1]) Let d ∈ H2(X7;Z), r ∈ {0, 1}, and s ≥ 0 such that
c1(X7) · d− 1 = r + 2s. Then WX−7 (4),RP 2,RX−7 (4)(d, s) is sharp.

4.2.4 Elements of the proof of Theorems 4.17 and 4.20

Theorems 4.17 and 4.20 are obtained by applying Li’s degeneration formula and its real counterpart to the
degenerations Ỹ of X7 describe in Proposition 4.15, together with a set of sections x : C → Ỹ satisfying
x(0) ⊂ X̃6 \ X̃2. As mentioned in Section 4.2.1, no non-trivial covering appears during this degeneration.

Let Ẽ′1 and Ẽ′2 be the two (−1)-curves in X̃2 intersecting E. Denote respectively by p7 and p8 the

corresponding intersection points. Let T1, . . . , T6 be the six rational curves in X̃2 such that T 2
i = Ti·Ẽ′2 = 0,

and such that Ti passes through Ẽi ∩E. Denote also by Ẽ′7 the (−1)-curve in X̃2 which does not intersect

E. We may further assume that we chose Ẽ′1 and E1, . . . , E7 such that the seven curves Ẽ1∪T1, . . . Ẽ6∪T6,

and Ẽ′7 in π−1(0) respectively deform to E1, . . . , E7 in X7.

Let us choose x(t) a generic set of c1(X7) ·d−1+g sections C→ Ỹ such that x(0) ⊂ X̃6 \ X̃2. For each
t 6= 0, we denote by C(d, g, x(t)) the set of maps f : C → X7 with C an irreducible curves of geometric
genus g, such that f(C) realizes the class d in H2(X7;Z), and contains all points in x(t). We denote by
C(d, g, x(0)) the set of limits, as t goes to 0, of elements C(d, g, x(t)).

It turns out that the set C(d, g, x(0)) is finite, and that its cardinal does not depend on x(0) as long as

this latter is generic. Moreover if f : C → π−1(0) is an element of C(d, g, x(0)), and if C
′

is an irreducible

component of C mapped to X̃2, then one of the four following situations occurs:

1. f(C
′
) realizes the class [D], and intersect E in two points determined by f(CX̃6

), distinct from p7

and p8;

2. f(C
′
) realizes the class [D], and is tangent to E at a point determined by f(CX̃6

), distinct from p7

and p8;

3. f(C
′
) realizes the class [D] − [Ẽ′i], i = 1, 2, and intersects E in a point determined by f(CX̃6

),
distinct from p7 and p8;

4. f(C
′
) realizes the class [Ẽ′i], i = 1, 2;
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where CX̃6
denotes the union of irreducible components of C mapped to X̃6.

Now one describes easily any element of C(d, g, x(0)) by aX7-graph. The complex and real multiplicities
of this latter are deduced from Proposition 4.11 and its real counterpart, an adaptation of Proposition
4.12.

4.2.5 Absolute invariants of X8

By pushing a bit further the technique used in the proof of Theorems 4.17 and 4.20, we compute Gromov-
Witten invariants and some Welschinger invariants of X8. Here we briefly indicate how to adapt the
strategy used in the case of X7. For more details, we refer to [Bru14, Section 7].

We start with the degeneration Ỹ of X7 described in Proposition 4.15. Choose an additional generic
holomorphic section p′0 : C → Ỹ such that p′0(0) ∈ X̃6 \ X̃2, and denote by Z the blow up Ỹ along

the divisor p′0(C). The map π : Ỹ → C naturally extends to a flat map π : Z → C, which provides a

degeneration of X8 to π−1(0) = X̃8,1 ∪ X̃2.

In this framework, Theorem 4.17 extends as follows.

Theorem 4.25 ([Bru14, Theorem 7.2]) Gromov-Witten invariants of X8 can be reduced to the enu-

meration of complex algebraic curves in X̃8,1.

All computations in X̃8,1 needed to compute Gromov-Witten invariants of X8 are performed in [SS13].
To our knowledge, Theorem 4.25 provides the first explicit computations of Gromov-Witten invariants of
X8 in positive genus.

Example 4.26 ([Bru14, Theorem 7.3]) Using Theorem 4.25 and [SS13, Theorem 2.1] one computes
the values of GWX8

(2c1(X8), g) listed in table 4.3. The rational case has been first computed in [GP98,
Section 5.2].

g 0 1 2
GWX8

(2c1(X8), g) 90 18 1

Table 4.3: GWX8
(2c1(X8), g)

Theorem 4.25 also has a real counterpart. Denote by X8(κ) with κ = 0, . . . , 3, and X±8 (4) the surface
X8 equipped with the real structure such that

RX8(κ) = RP 2
8−2κ, RX−8 (4) = RP 2

1 t RP 2, RX+
8 (4) = S2 t RP 2

2 .

These real structures on X8 represent 6 of the 11 deformation classes of real Del Pezzo surfaces of degree
1.

Theorem 4.27 ([Bru14, Theorem 7.5]) The Welschinger invariants WX8(κ)(d, 0), WX−8 (4),Lε
(d, 0), and

WX+
8 (4),Lε

(d, 0) can be reduced to the enumeration of real algebraic curves in X̃8,1.

All enumerations of real curves in X̃8,1 needed to compute Welschinger invariants using Theorem 4.27
are performed in [IKS13a], by enumerating real curves passing through a configuration of real points in
CH position.
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Remark 4.28 Although we do not see any obstruction to enumerate real and complex curves in X̃8,1

using the floor diagrams techniques, we chose not to do it in [Bru14] for the sake of shortness. As a
consequence, Theorem 4.27 computes Welschinger invariants of X8 only for configurations or real points.
For the same shortness reason, we decided to restrict to standard real structures on X̃8,1. In particular,
with some additional effort one should be able to generalize Theorem 4.27 to compute W(X8,τ),L,L′(d, s)
for s > 0 and more real structures on X8.

Combining Theorems 4.25 and 4.27 together with Theorems3.27 and 3.32, we obtain the following
corollaries.

Corollary 4.29 ([Bru14, Corollary 7.5]) Given d ∈ H2(X8;Z) with d · [D] ≥ 1, one has

WX−8 (4),Lε
(d, 0) = WX+

8 (4),L3ε−1
(d, 0) ∀ε ∈ {0, 1}.

Corollary 4.30 ([Bru14, Corollary 7.6]) For any d ∈ H2(X8;Z) and κ ∈ {0, . . . , 3}, one has

WX8(κ)(d, 0) ≥ 0 and WX±8 (4),Lε,RX±8 (4)(d, 0) ≥ 0.

Corollary 4.31 ([Bru14, Corollary 7.7]) For any d ∈ H2(X8;Z) one has

WX8(0)(d, 0) = GWX8
(d, 0) mod 4.

Example 4.32 ([Bru14, Example 7.9]) Using Theorem 4.27, one computes the Welschinger invari-
ants of X±8 (κ) listed in Table 4.4. The invariants WX8(κ)(2c1(X8), 0) with κ ≤ 3 have been first computed
by Horev and Solomon in [HS12].

κ 0 1 2 3 4− 4− 4+ 4+
L = RP 2

1 L = RP 2 L = RP 2
2 L = S2

WX±8 (κ),L,RX±8 (κ)(2c1(X8), 0) 46 30 18 10 6 4 6 4

Table 4.4: Welschinger invariants of X8 for the class 2c1(X8)

4.2.6 Further comments

4.2.6.1 Other Welschinger invariants of X8

As mentioned above, we do not see any obstruction other than technical to extend Section 3.2.2 to the
enumeration of real curves in X̃8,1 for arbitrary r, s and any real structure on X̃8,1. In particular Theorem
4.27 should generalize to Welschinger invariant of X8 for almost all, if not all, real structures. Our method
should also apply to compute the invariants recently defined in [Shu14].

The standard methods from [IKS13b, IKS13a, BM08] should also apply here to study logarithmic
asymptotic of Welschinger invariants.

4.2.6.2 Relation with tropical Welschinger invariants and refined Severi degrees

Invariance of Gromov-Witten and Welschinger invariants combined with Theorems 4.17, 4.20, 4.25, and
4.27 provide non-trivial relations among marked floor diagrams counted with their various multiplicities.
It is not obvious to us how those relations follow from a purely combinatorial study of marked floor
diagrams.
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Denote by Wα<,β<,α=,β=

X̃n(κ)
(d, g, s, x) the straightforward generalization to any genus of the numbers

Wα<,β<,α=,β=

X̃n(κ)
(d, s, x) defined in Section 3.2.2.1. In the case when s = 0, all definitions from Section

3.2.2.4 also make sense for positive genus, and Theorem 3.32 still holds (the proof is exactly the same).

If x◦ is a configuration of real points in RX̃n(κ) as in the proof of Theorems 3.27 and 3.32, then one sees

easily from the proof of Theorem 3.32 that the numbers W
0,β<1 u1,0,β

=
1 u1

X̃n(κ)
(d, g, 0, x◦ txE) do not depend on

the position in each copy of N of the points in x◦.

More surprisingly, the numbers W
0,(d·E)u1,0,0

X̃n(κ)
(d, g, 0, x◦txE) we computed on a few examples, with x◦

as in the proof of Theorems 3.27 and 3.32, also satisfy relations analogous to Theorems 4.20 and 4.27 for
positive genus. Furthermore in the case of X3, the numbers I obtained in this way are... the corresponding
tropical Welschinger invariants (see [IKS09] for a definition). This observation is certainly in favor of the
existence of a more conceptual definition and signification of those tropical Welschinger invariants. To my
knowledge, only some tropical Welschinger invariants of the second Hirzebruch surface yet found such an
interpretation in Proposition 4.8, where they are shown to correspond to genuine Welschinger invariants
of the quadric ellipsoid.

Tropical Welschinger invariants are also related to refined Severi degrees. Still in the case s = 0, it
would have been possible to define and compute analogous polynomials interpolating between real and
complex multiplicities of marked floor diagrams relative to a conic. Unfortunately, no relations, even
conjectural, are known yet between refined Severi degrees and Welschinger invariants when s > 0. Since
we are interested in this memoir in the computation of Welschinger invariants for any values of s and r,
we chose not to develop the refined Severi degree aspect of our computations.

4.3 Deformation of tropical Hirzebruch surfaces and enumera-
tive geometry

In [AB01], Abramovich and Bertram related genus 0 enumerative invariants of Σ0 = CP 1 × CP 1 and
the second Hirzebruch surface Σ2. The strategy of their proof is to understand how algebraic curves on
Σ0 behave when this latter surface degenerates to Σ2. Later on this method was extended by Vakil in
[Vak00a] to enumerative invariants of any genus of Σ0 and Σ2, and more generally to relate enumerative
invariants of an almost Fano surface and any of its deformations.

In this section, we illustrate the use of tropical techniques by generalizing Abramovich-Bertram-Vakil
formula to the case of Σn and Σn+2 (Theorem 4.36). The main idea underlying our strategy is to consider a
tropical surface X in R3 which is a suitable tropicalization of Kodaira’s deformation of complex Hirzebruch
surfaces; see Section 4.3.1.3 for a more detailed description. Next the proof of Theorem 4.36 basically
consists of the suitable Correspondence Theorems (see Theorem 4.40 and [BM13, Theorem 3.17]) relating
the invariants introduced in Section 4.3.1.1 to their tropical counterparts, and a proof of the tropical
version of Theorem 4.36.

We define the enumerative invariants we are interested in, and state our main formula in Section
4.3.1. We also outline there our strategy, and briefly discuss where the difficulties we have to deal with
come from. We describe the corresponding tropical problem together with a correspondence theorem in
Section 4.3.2, where we also briefly indicate how to deduce Theorem 4.36 from Theorem 4.40. For the sake
of shortness, we only present here one of the two Correspondence Theorems proved in [BM13], namely
[BM13, Theorem 4.13].

Results presented in this section were obtained jointly with Markwig, and appeared in [BM13]. The
two Correspondence Theorems 4.40 and [BM13, Theorem 3.17], and the formula of Theorem 4.36 together
with its tropical method of proof should be viewed as the main contributions of [BM13].
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4.3.1 Relations among enumerative invariants of Σn and Σn+2

4.3.1.1 Enumerative invariants under consideration

We start by defining enumerative invariants that will be related in Theorem 4.36. Note that contrary to
the rest of this typescript, we count reducible curves in this section. In particular, it is more natural to
consider the Euler characteristic of the curves rather than their genus. Recall that Newton fans have been
defined in Section 2.3.2.

Definition 4.33 Given a Newton fan δ in Z2 and an integer χ ∈ Z, the number of (not necessarily
irreducible) algebraic curves in Tor(Πδ) with Newton fan δ, whose normalization has Euler characteristic
χ, and passing through a generic configuration ω of |δ| − χ

2 points does not depend on ω; we denote this
number by Nχ(δ).

Alternatively Nχ(δ) is the number of algebraic curves in (C∗)2 with Newton fan δ, whose normalization
has Euler characteristic χ− |δ|, and passing through a generic configuration of |δ| − χ

2 points in (C∗)2.

Example 4.34 Consider complex curves in (C∗)2 with Newton fans of the form

δ = {(1, n)a, (0,−1)an+b, (−α1, β1), . . . , (−αk, βk)}

with αi, βi ≥ 0 for all i. A complex curve with such a Newton fan can naturally be seen as a curve of
bidegree (a, b) in Σn with a singularity at the point (0,∞) in the standard coordinates corresponding to
Πδ. In particular, a generic algebraic curve in Σn of bidegree (a, b) will have the Newton fan

δ(a, b, n) = {(1, n)a, (0,−1)an+b, (−1, 0)a, (0, 1)b}

in standard coordinates.

Theorem 4.36 involves some additional relative enumerative invariants of Hirzebruch surfaces. We
give their definition below, and refer to [BM13, Sections 2.3, 3.2, and 5.3] for more details about these
invariants and their tropical computation. We denote by E an irreducible non-singular algebraic curve of
self-intersection −n in Σn (E is unique if n > 0).

Let S0 be a curve of bidegree (1, 1) in Σn and let p0 ∈ S0 \E be a point. We denote by F0 the unique
curve of bidegree (0, 1) passing through p0 and we choose a (non-standard) local system of coordinates
(x0, y0) on Σn at p0 such that S0 has local equation y0 = 0 and F0 has local equation x0 = 0. Given two

integer numbers d1 and d2, a (d1, d2)-germ at p0 is a curve in Σn with local equation x
d′2
0 + cy

d′1
0 = 0 with

c ∈ C∗, d′1 = d1

gcd(d1,d2) , and d′2 = d2

gcd(d1,d2) . Let D be a local branch at p0 of a reduced algebraic curve

in Σn containing neither S0 nor F0 as an irreducible component. Denote by dS0
(resp. dF0

) the local
intersection multiplicity of D with S0 (resp. F0) at p0. Then there exists a unique (dS0 , dF0)-germ at p0

whose intersection multiplicity with D at p0 is maximal. We call this curve the tangent germ of D at p0.
Let n ≥ 0, and u, α1, . . . αr, d1, . . . dr+s > 0 be integer numbers such that αi ≤ di − 1 and

∑r+s
i=1 di =

u(n+1), and let S0, F0, and p0 as above. Choose a configuration x = {G1, . . . , Gr, p1, . . . , ps} of s distinct
point p1, . . . , ps in S0 \ (E ∪ {p0}), and r distinct germs at p0 such that Gi is a (di + αi(n+ 1), αi)-germ
at p0. We denote by SS0,p0

(x) the set of all algebraic curves S in Σn of bidegree (a, 0) such that

• S has a smooth branch tangent to S0 at pi with intersection multiplicity dr+i for i = 1, . . . , s;

• S has exactly r branches D1, . . . , Dr at p0, and the local intersection multiplicity of Di with S0

(resp. F0) at p0 is equal to di + αi(n+ 1) (resp. αi);

• Gi is the tangent germ of Di at p0;

• S has u connected components, whose normalization are all rational;
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• each connected component of S intersect F0 \ {p0} in a single point, with intersection multiplicity 1.

For x generic, the set SS0,p0(x) is finite and its cardinal is independent of S0, p0, and x. We denote
it by N (u, n, d, α). Note that it is independent of the ordering of the pairs (d1, α1), . . . , (dr, αr) and of
dr+1, . . . , dr+s. If r = 0, we write α = 0. We refer to [BM13, Example 2.7] for explicit computations of
the invariants N (u, n, d, α) in the cases n = 0, 1, and 2.

Remark 4.35 Given fixed n and u, there clearly exist finitely many choices for d and α. Furthermore
the computation of N (u, n, d, α) reduces to the computation of the finitely many possible N (1, n, d′, α′),
and to the combinatorial enumeration of how elements of x can be distributed among the u irreducible
components of S.

4.3.1.2 Main formula

Before stating our formula relating enumerative invariants introduced above, we need first to introduce
some additional notation. Let δ0 be the Newton fan

δ0 = {(1, n)a, (0,−1)an+b, (−1, 0)a, (0, 1)b}.

We write δ ` δ0 if δ is a Newton fan satisfying

δ = {(1, n+ 2)m, (0,−1)a(n+1)+b, (−1, 0)A,
(−α1, β1), . . . , (−αr, βr), (0, βr+1), . . . , (0, βr+s), (0, 1)U}

with
0 < m ≤ a, 0 ≤ A ≤ min{m, b},

αi, βi > 0 for i = 1 . . . , r, and βr+1, . . . , βr+s > 1.

Note that for every δ ` δ0,

Πδ ⊂ Conv{(0, 0), (0, a), (b− a, a), (a(n+ 1) + b, 0)},

where the latter is the polygon dual to

{(1, n+ 2)a, (0,−1)a(n+1)+b, (−1, 0)a, (0, 1)b−a}.

In particular once δ0 is fixed, the choices of such δ are limited (see Figure 4.3).

(0,0)

(1,n+2)

(a(n+1)+b,0)

(0,a) (b−a,a)

(−1,0)

(0,−1)

i
(0,1)

(−α ,−β )
i

Figure 4.3: Finitely many fans δ ` δ0.

For a Newton fan δ ` δ0, we define the following quantities:

• χ′ = χ− 2(a+ b−m− r − s−A− U);
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• d = (β1 + α1, . . . , βr + αr, βr+1, . . . , βr+s, 1
U+A−b);

• α = (α1, . . . , αr).

The enumerative invariants of Σn and Σn+2 introduced in the preceding section are related in the next
theorem.

Theorem 4.36 ([BM13, Theorem 1.2]) Let n ≥ 0 and χ ∈ Z be two integers, and let δ0 be as above
the Newton fan

δ0 = {(1, n)a, (0,−1)an+b, (−1, 0)a, (0, 1)b}.

Then we have the following equation:

Nχ(δ0) =
∑
δ`δ0

((
U

b−A

)
·
r∏
i=1

gcd(αi, βi) ·
s∏
i=1

βr+i · N (a−m,n, d, α) Nχ′(δ)

)
.

Note that the factor Nχ′(δ) indeed counts curves on Σn+2 by Example 4.34. Note also that as pointed
out in Remark 4.35, for a fixed n the computations of all numbers N (a − m,n, d, α) reduces to the
computation of finitely many cases. For explicit specialization of Theorem 4.36 to the cases n = 0, 1, 2,
we refer to [BM13, Examples 1.3, 1.4, and 1.5]

4.3.1.3 Strategy of the proof of Theorem 4.36

Let X be the tropical surface in R3 defined by the tropical polynomial “x + y + z”. It consists of
three half-planes σ1 = {x = y ≥ z}, σ2 = {x = z ≥ y} and σ3 = {y = z ≥ x} meeting along the
line L = {x = y = z} = R(1, 1, 1), see Figure 4.4. We claim that X is a tropicalization of Kodaira’s

σ
1

σ
2

σ
3

L

Figure 4.4: The tropical surface X.

deformation of complex Hirzebruch surfaces Σn to Σn+2. Indeed, Kodaira’s deformation of complex
Hirzebruch surfaces Σn to Σn+2k can be written in coordinates in (a suitable compactification of) (C∗)4

by the equation (see for example [BM13, Appendix A])

z + t(xk + y) = 0.

Considering this 3-fold as a family of complex surfaces indexed by t, its tropicalization in the case k = 1
is the tropical hypersurface in R3 with equation z + “1 · x + 1 · y”, which is X up to an obvious tropical
change of coordinates.

Similarly, a tropicalization of the deformation of Σn to Σn+2 together with a configuration of points
whose limit, as t goes to +∞, lyes in (C∗)3 is provided by the tropical surface X together with a config-
uration of points lying on the face σ1 very far down from the line L (see [BM13, Appendix A]). In this
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setting, the tropical curves we are enumerating naturally contain two parts: one corresponding to the face
σ1, and one corresponding to the two upper faces σ2 and σ3. The former correspond to curves in TΣn+2,
and the latter to curves in TΣn. This behavior is parallel to Kodaira’s deformation in the complex world
as we discuss in more detail in Section 4.3.1.4.

Note that this ambient tropical surface X, different from the “usual” R2, is imposed by our strategy
based on deformation of Hirzebruch surfaces. Indeed the presence of a unique exceptional curve on Σn,
with different self-intersection for different values of n, is an obstruction for any deformation of Σn to
Σn+2 to be toric. As a consequence, to model this deformation tropically one needs to make use of
tropical modifications (see [Mik06]) of tropical Hirzebruch surfaces. In particular the tropical model of
TΣn involved in this deformation is no longer a tropical toric compactification of R2.

The two main ingredients for our proof of Theorem 4.36 are the enumeration of tropical curves in the
tropical surface X and its relation, via Correspondence Theorems 4.40 and [BM13, Theorem 3.17], to the
enumeration of algebraic curves in Hirzebruch surfaces. Both aspects have not been much explored in
the literature yet. Most papers about tropical enumerative geometry deal with the case of tropical curves
in Rn. In the case of curves in X, the tropical inclusion is more subtle than the set theoretic one, as
it has already been noticed by several people (see for example [Vig09, BMb, BS14]). In other words a
tropical curve C might be set-theoretically contained in X without being tropically contained in X. One
has to require extra conditions for this latter inclusion to hold. This phenomenon quite complicates the
enumerative geometry of general tropical varieties. However, the surface X we are interested in here is
simple enough so that only one extra condition, the so-called Riemann-Hurwitz condition, suffices to rule
out parasitic tropical curves. The necessity of this condition has been observed earlier by Mikhalkin and
the author ([BMb], see also [BBM11], [ABBR13a], and [ABBR13b]). In the other direction, we prove
a correspondence theorem for tropical curves in X by reducing to correspondence theorems for tropical
curves in R2 with a multiple point at some fixed point on the toric boundary. Thanks to this reduction,
our proofs goes by a mild adaptation of the proofs of Correspondence Theorems from [Mik05] and [Shu12],
in the framework of phase-tropical morphisms given in [BBM14].

4.3.1.4 Background, context, and difficulties

As in [AB01], one may try to relate enumerative invariants of Σn and Σn+2k by studying the limit of curves
when Σn deforms to Σn+2k. However this analysis gets much more complicated when n > 0. The main
reason for that is that as soon as n > 0 both surfaces Σn and Σn+2k contain an exceptional curve, say En
and En+2k, and that curves in Σn degenerate to curves in Σn+2k with singularities at k fixed points on
En+2k. Those latter points may be thought as the “virtual intersection points of En and En+2k” defined
by the chosen deformation from Σn to Σn+2k.

Let us explain in details the origin of the complications arising when n > 0.

First let us decompose the Kodaira deformation of Σn to Σn+2k into two steps: a deformation of Σn to
the normal cone of a curve of bidegree (1, k), followed by the blow-down of the Σn copy in the special fiber.
More precisely, let V be a non-singular curve of bidegree (1, k) in Σn, and let Σ be the trivial family Σn×C
blown-up along the curve V ×{0}. The natural projection π : Σ→ C defines a flat degeneration of Σn into
the reducible surface π−1(0) = Σn ∪ Σn+2k intersecting transversely along V ⊂ Σn and En+2k ⊂ Σn+2k.

It turns out that the Σn copy in π−1(0) can be contracted to V by a blow down bl : Σ→ Σ′, and that
the induced projection π′ : Σ′ → C is precisely the Kodaira deformation of Σn to Σn+2k (see Figure 4.5).
With this picture in mind, the “virtual intersection points of En and En+2k” we mentioned above are now
simply the intersection points of V and En in the Σn copy of the central fiber π−1(0) ⊂ Σ. Relations
between enumerative invariants of Σn and Σn+2k should now be derived from a careful analysis of how
curves in Σn degenerate when this latter surface degenerates to Σn ∪ Σn+2k.

At this point, the origin of the complications might appear more clearly with a symplectic point
of view on the problem and the methods. On the level of the underlying symplectic manifolds (recall
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Figure 4.5: The 3-folds Σ and Σ′.

that Σn is a Kähler manifold), the above deformation Σ of the reducible surface Σn ∪ Σn+2k to Σn can
be seen as a symplectic sum of Σn and Σn+2k glued respectively along V and En+2k. Symplectic sum
formulas (e.g. [IP04, LR01, EGH00], or [Li02] in the algebraic setting) relate Gromov-Witten invariants
of a symplectic sum with those of the symplectic summands, but these Gromov-Witten invariants are
relative to some smooth symplectic hypersurface. Symplectic sum formulas provide an alternative proof
of the Abramovich-Bertram-Vakil formula, and more generally express Gromov-Witten invariants of a
symplectic 4-manifold in term of its Gromov-Witten invariants relative to an embedded symplectic sphere
E with self-intersection −l. Note however that as soon as l ≥ 2, these formulas involve enumeration of
ramified coverings, which singularly complicates actual computations when l ≥ 3. Still, one can deduce in
this way a relation among enumerative invariants of Σ1 and Σ3 equivalent to our Theorem 4.36 specialized
to the case n = 1. However when n > 1, relating enumerative invariants of Σn and Σn+2k requires to
consider Gromov-Witten invariants relative to a singular symplectic curve. Indeed, the complex structure
on the algebraic surface Σn is not generic as soon as n > 1 and enumerating algebraic curves on Σn
is the same than computing Gromov-Witten invariants of the underlying symplectic manifold relative
to the symplectic divisor En. In particular, relating enumerative invariants of Σn and Σn+2k using the
deformation Σ can be seen as expressing Gromov-Witten invariants of Σn relative to En in terms of
Gromov-Witten invariants of Σn relative to En ∪ V and of Σn+2k relative to En+2k. Since the curves En
and V intersect in k points, Gromov-Witten invariants relative to a singular divisor show up naturally
with the method we intend to apply. Gromov-Witten invariants relative to a singular divisor have been
defined only recently (see [Ion13, Par11], or [GS13, AC11] in the algebraic setting) and we are not aware
of a general symplectic sum/degeneration formula for those invariants yet.

We view our tropical approach as a tool to overcome these problems. As explained in Section 4.3.1.3,
in a suitable tropicalization of the above strategy, the family Σ is replaced by the single tropical surface
X, and the study of degenerations of holomorphic curves is replaced by the enumeration of tropical curves
in X. We then perform this enumeration in the special case of the degeneration of Σn to Σn ∪Σn+2. We
obtain in this way Theorem 4.36, which may be seen as such a symplectic sum/degeneration formula in
some particular instance of normal crossing divisor. The case of the degeneration of Σn to Σn ∪ Σn+2k

should also be doable tropically, but requires some additional efforts (see Section 4.3.3).

The aim of the above discussion is to replace our work in the context of current mathematical de-
velopments and to explain where the difficulties we have to deal with come from. Having said that, we
formulate Theorem 4.36 in the algebraic language without referring explicitly to relative Gromov-Witten
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invariants. Hence our formula expresses (some) enumerative invariants of Σn in terms of (some) enumera-
tive invariants of Σn+2 and some finitely many simple relative enumerative invariants of Σn, both of these
latter invariants involving curves with a prescribed very singular point.

4.3.2 Correspondence theorem for tropical curves in X

We give in this section the correspondence theorem 4.40 for tropical curves in X, which is one of the main
ingredient in the proof of Theorem 4.36. As usual, We start by setting up a tropical enumerative problem
in the tropical surface X.

Let us first define tropical morphisms h : C → X from a tropical curve C to the tropical surface X.
As it has already been mentioned, the tropical inclusion is more subtle than the set theoretic inclusion. In
the simple situation we deal with here, i.e. X is just made of three faces meeting along the line L, there
is only one extra condition we have to impose on h to be tropically contained in X: h should satisfy the
so-called Riemann-Hurwitz condition. This condition is based on tropical intersection theory, and we refer
for example to [AR10, Sha13] for an account on this latter. More conditions that have to be required for a

tropical morphism h : C → X̃ to a more general tropical surface X̃ can be found in [BS14] and [GSW13],
see also Section 6.2.

Definition 4.37 Let f : C → Rn be a tropical morphism with f(C) ⊂ X, and let v be a vertex of C
mapped to L. The overvalency of v is defined by

ovv := kv − (f(C) · L)v − 2 + 2gv,

where kv is the number of edges of C adjacent to v and not mapped to L, and (f(C) · L)v is the tropical
intersection number of f(C) and L in X at v.

The map f : C → X is a tropical morphism to X if ovv ≥ 0 for any vertex v of C with (f(C) ·L)v > 0.

This extra condition to be a morphism to X and not only to Rn is a consequence of the Riemann-
Hurwitz formula in complex geometry (see [BM13, Section 5.1] for more details) and is usually referred
to as the Riemann-Hurwitz condition.

Remark 4.38 In fact, we need a slightly more general definition of tropical morphisms in [BM13], since
C might have degenerate edges. However, according to Proposition [BM13, Proposition 4.2], any tropical
morphisms which appears in the set TC(δ, χ, x) below does not contain any degenerate edge. Hence it is
safe in this brief presentation of [BM13] to ignore degenerate edges.

We describe now a particular kind of tropical enumerative problems concerning tropical morphisms
through point conditions in X, and describe properties of the tropical morphisms that are solutions. Recall
that the tropical surface X is made of three 2-dimensional cells, σ1 = {x = y ≥ z}, σ2 = {x = z ≥ y} and
σ3 = {y = z ≥ x}, meeting along the line L = R(1, 1, 1).

Let δ be a Newton fan only containing vectors in X, but no vectors in L, and let χ ∈ Z. We denote
by δi the set of directions of δ in σi for i = 1, 2, 3, and by d the intersection multiplicity of L with a
tropical curves in X with Newton fan δ. For the rest of this section, we assume that any direction in δ3
has tropical intersection multiplicity 1 with L, i.e. d = |δ3|.

Given a configuration x of |δ| − χ− d points in σ1 ∪ σ2, we denote by TC(δ, χ, x) the set of all (maybe
reducible) closed tropical morphisms f : C → X with Newton fan δ, with χtrop(C) = χ, and passing
through all points in x. Given a tropical morphism f : C → X, we define Ci = f−1(σi).

Proposition 4.39 ([BM13, Proposition 4.2]) For a generic configuration x, the set TC(δ, χ, x) is fi-
nite. Moreover any tropical morphism f : C → X in TC(δ, χ, x) satisfies the following properties:
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1. there is no edge e of C with f(e) ⊂ L;

2. any vertex v of C such that f(v) /∈ L is 3-valent; furthermore f is an embedding in a neighborhood
of v;

3. the tropical curve C is explicit;

4. C3 is a union of d ends of C;

5. for any vertex v of C such that f(v) ∈ L one has ov(v) = 0, and v is adjacent to exactly one edge
of C1 and C2;

If x ⊂ σ1 we have in addition:

6 C2 is a union of #∆2 trees.

Note that it follows from the conditions above that C3 has exactly dv ends adjacent to each vertex v such
that f(v) ∈ L.

From now on, we consider the following Newton fan

δ = {(1,−n, 1)a, (0, 1, 1)an+b, (−1, 0, 0)a, (0,−1, 0)b, (0, 0,−1)a(n+1)+b},

in particular we have

δ1 = {(0, 0,−1)a(n+1)+b},
δ2 = {(1,−n, 1)a, (0,−1, 0)b} and

δ3 = {(0, 1, 1)an+b, (−1, 0, 0)a}.

Note that here d = (n+ 1)a+ b, and |δ3| = d. In particular we are in the situation covered by Proposition
4.39. Let us choose an integer χ ∈ Z, and a generic configuration x of |δ| − χ− d points in σ1 ∪ σ2.

Given an element f : C → X of TC(δ, χ, x), we denote by VertL(C) (resp. Vertσi(C)) the set of vertices
of C mapped to L (resp. σi \L). If v ∈ Vertσ1

(C)∪Vertσ2
(C), then it follows from Proposition 4.39 that

val(v) = 3. Given v ∈ Vertσi(C), we choose any two of its adjacent edges ev,1 and ev,2. Note that we have
vf,ev,j = (av,j , av,j , bv,j) if i = 1, and vf,ev,j = (av,j , bv,j , av,j) if i = 2 for some av,j and bv,j . A vertex
v ∈ VertL(C) is adjacent to dv ends mapped to σ3, say kv ends with direction (−1, 0, 0) and lv ends with
direction (0, 1, 1) (pointing away from L). Note that kv + lv = dv.

We define the multiplicity of a vertex v ∈ Vertσi(C) as

µ(v) =

∣∣∣∣det

(
av,1 av,2
bv,1 bv,2

)∣∣∣∣ .
We define the multiplicity of a vertex v ∈ VertL(C) as

µ(v) =

(
kv + lv
kv

)
.

We define the multiplicity of f as

µ(f) =
∏

v∈Vert(C)

µv.

We also define the two following number

TNχ(δ, x) =
∑

f∈TC(δ,χ,x)

µ(f).

Next Theorem is one of the main results of [BM13].
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Theorem 4.40 ([BM13, Theorem 4.13]) Let δ, χ, and x be as above, and let

δ0 = {(1, n)a, (0,−1)an+b, (−1, 0)a, (0, 1)b}.

Then we have

TNχ(δ, x) = N2χ(δ0).

A consequence of Theorem 4.40 is that the numbers TNχ(δ, x) do not depend on the choice of x, as long
as x ⊂ σ1 ∪ σ2 is generic. As mentioned earlier, our proof of Theorem 4.40 goes by a mild adaptation
of the proofs of Correspondence Theorems from [Mik05] and [Shu12], in the framework of phase-tropical
morphisms given in [BBM14].

Remark 4.41 One can adapt Theorem 4.40 to the enumeration of irreducible curves, see [BM13, Theorem
4.13].

4.3.2.1 Element of the proof of Theorem 4.36

As explained in Section 4.3.1.3, the proof of Theorem 4.36 can be deduced by applying Theorem 4.40
with a configuration x ⊂ σ1 such that points in x have very low z-coordinate compared to the x and
y-coordinates. In this case, tropical morphisms in TC(δ, χ, x) hit the line L in a very particular way. Next
lemma is the last key step in the proof of Theorem 4.36 .

Lemma 4.42 ([BM13, Lemma 4.15]) Suppose that x ⊂ σ1 and that the points in x have very low z-
coordinate compared to the x and y-coordinates. Let f : C → X be an element of TC(δ, χ, x), and v be a
vertex of C mapped to the line L. Then all possibilities of how f can look like in a neighborhood of f are
depicted in Figure 4.6.

We deduce from Lemma 4.42 that all elements of TC(δ, χ, x) can be recovered only out of the set
TC′(δ, χ, x) = {f|C1

| f ∈ TC(δ, χ, x)}. Elements of this latter set are responsible for the Nχ′ terms in the
formula of Theorem 4.36. The other terms come from the number of possibilities to complete an element
of TC′(δ, χ, x) into an element of TC(δ, χ, x), and from [BM13, Correspondence Theorem 3.17].

4.3.3 Further comments

We discuss some possible extensions of the results and methods presented in this section.
Although Theorem 4.40 assumes that configurations x are contained in the two faces σ1 and σ2,

Theorem 4.36 is obtained just by considering configurations x contained in σ1. It should be possible to
generalize Theorem 4.36 for any configuration x ⊂ σ1 ∪ σ2. This would also require to enlarge the family
of (1, 1)-relative invariants considered here.

It would also be interesting to relate enumerative invariants of Σn and Σn+2k when k ≥ 2. One possible
way would be to study enumerative geometry of the tropical surface Xk in R3 given by the polynomial
“xk + y + z”. In this case the assumption we made in Section 4.3.2, i.e. that d = #∆i for some i, fails.
In particular the study of enumerative geometry of Xk requires more care for k ≥ 2.

Related to the previous paragraph is the question of determining the multiplicity of a tropical morphism
to X. In general, the multiplicity of a vertex tropically mapped to the line L should be expressed in terms
of triple Hurwitz numbers weighted by some binomials coefficients. Although all those numbers are in
principle computable, no nice general formula is known yet. In the particular case treated here, the
corresponding Hurwitz numbers are very simple: it is the number of rational maps CP 1 → CP 1 of degree
d with a prescribed pole and zero of maximal order. In particular we could perform easily all computations
keeping hidden the Hurwitz numbers aspect. However for more general enumerative problems in X, these
Hurwitz numbers will show up naturally.
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Figure 4.6: Four ways to hit L.

More generally, the study of enumerative geometry of general tropical surfaces, or even tropical varieties
of any dimension, is of great interest. So far, little is known about this problem. In this case all Hurwitz
numbers will come into the game, not only the triple ones mentioned above.
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Chapter 5

Tropical Hurwitz and characteristic
numbers

In this chapter we compute Hurwitz numbers, and characteristic numbers of CP 2 via tropical geometry
and floor diagrams.

Hurwitz numbers count ramified coverings of a compact closed oriented surface S having a given set
of critical values with given ramification profiles. Characteristic numbers of CP 2 count plane curves sub-
ject to some incidence and tangency conditions. On the level of maps, tangency conditions are naturally
interpreted as ramification conditions, hence Hurwitz numbers can be thought of as 1-dimensional charac-
teristic numbers. One of the main results of this chapter is an expression of genus 0 characteristic numbers
of CP 2 in terms of Hurwitz numbers of CP 1 (Theorem 5.38).

This result is obtained first by replacing the computation of Hurwitz and characteristic numbers
to the computation of their tropical analogues (Theorems 5.11 and 5.22), and then to apply the floor
decomposition technique developed in Chapter 3 (Theorem 5.38). Note that Theorem 5.38 involves not
only closed Hurwitz numbers but also open ones, which enumerate surfaces possibly with boundary. We
introduce these open Hurwitz numbers in Section 5.1.

We stress that we are not aware of any symplectic nor algebraic degeneration formula that allows
computations of characteristic numbers. In particular, the floor decomposition technique provides a new
insight on these characteristic numbers and their relation to Hurwitz numbers.

All results presented in this chapter were obtained in collaboration with B. Bertrand and G. Mikhalkin.
Section 5.1 and Section 5.2 respectively summarize the papers [BBM11] and [BBM14].

5.1 Open Hurwitz numbers

Here we give a tropical interpretation of Hurwitz numbers extending the one discovered in [CJM10]. In
addition we treat a generalization of Hurwitz numbers for surfaces with boundary which we call open
Hurwitz numbers. This work is motivated by Section 5.2 where the computation of genus 0 characteristic
numbers of CP 2 is reduced to enumeration of floor diagrams and computation of genus 0 open Hurwitz
numbers.
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Hurwitz numbers are defined as the (weighted) number of ramified coverings of a compact closed
oriented surface S of a given genus having a given set of critical values with given ramification profiles.
These numbers have a long history, and have connections to many areas of mathematics, among which
we can mention algebraic geometry, topology, combinatoric, and representation theory (see [LZ04] for
example).

In Section 5.1.1, we define a slight generalization of these numbers that we call open Hurwitz numbers.
To do so, we fix not only points on S and ramification profiles, but also a collection of disjoint circles on
S and the behavior of the coverings above each of these circles. Note that the total space of the ramified
coverings we consider now is allowed to have boundary components. We extend Definition 2.4 in Section
5.1.2 to tropical morphisms between to tropical curves. In particular, such morphisms have to satisfy a
Riemann-Hurwitz condition analogous to the one from Definition 4.37. In Section 5.1.3, we define tropical
open Hurwitz numbers, and establish a correspondence with their complex counterpart (Theorem 5.11).
Theorem 5.11 can be interpreted as a translation in the tropical language of the computation of open
Hurwitz numbers by cutting S along a collection of circles.

5.1.1 Classical open Hurwitz numbers

The data we need to define open Hurwitz numbers are

• S an oriented connected closed compact surface;

• L a finite collection of disjoint smoothly embedded circles in S; we denote by
◦
S the surface S \(⋃

L∈L L
)
;

• P be a finite collection of points in
◦
S;

• a number δ(S′) ∈ Z≥0 associated to each connected component S′ of
◦
S; to each circle L ∈ L which

is in the closure of the connected components S′ and S′′ of
◦
S (note that we may have S′ = S′′), we

associate the number γ(L) = |δ(S′)− δ(S′′)|;

• a partition µ(p) of δ(S′) associated to each point p ∈ P, where S′ is the connected component of
◦
S

containing p;

• a partition µ(L) of γ(L) associated to each circle L ∈ L.

We identify two continuous maps f : S1 → S and f ′ : S′1 → S if there exists a homeomorphism
Φ : S1 → S′1 such that f ′ ◦ Φ = f .

Now let us denote by S the set of all (equivalence class of) ramified coverings f : S1 → S where

• S1 is a connected compact oriented surface with boundary;

• f(∂S1) ⊂ ∪L∈LL;

• f is unramified over S \ P;

• f|f−1(S′) has degree δ(S′) for each connected component S′ of
◦
S;

• for each point p ∈ P, if µ(p) = (λ1, . . . , λk), then f−1(p) contains exactly k points, denoted by
q1, . . . , qk, and f has ramification index λi at qi;

• for each circle L ∈ L, if µ(L) = (λ1, . . . , λk), then f−1(L) contains exactly k boundary components
of S1, denoted by c1, . . . , ck, and f|ci : ci → L is an unramified covering of degree λi.
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Note that the Riemann-Hurwitz formula gives us

χ(S1) =
∑
S′

δ(S′) (χ(S′)− |P ∩ S′|) +
∑
p∈P

l(µ(p))

where l(µ(p)) is the length of the partition µ(p) (i.e. its cardinality as a multi-set of natural numbers).

Definition 5.1 ([BBM11, Definition 1.1]) The open Hurwitz number Hδ
S(L,P, µ) is defined as

Hδ
S(L,P, µ) =

∑
f∈S

1

|Aut(f)|

where Aut(f) is the set of automorphisms of f .

The open Hurwitz number Hδ
S(L,P, µ) is a topological invariant that depends only on the topological

type of the triple (S,
◦
S,P), and the functions δ and µ.

S’’

L

p

p p

1

32

S’

a) b)

Figure 5.1:

Example 5.2 Let S be the sphere, L be a circle in S, and p1, p2, and p3 three points distributed in S as
depicted in figure 5.1a. Let us also denote by S′ and S′′ the two connected components of S \L according
to Figure 5.1a. We define µ(p1) = µ(p2) = µ(p3) = (2). The table below lists some values of Hδ

S(L,P, µ)
easily computable by hand. Figure 5.1b depicts the only map to be taken into account in the second row of
the table.

δ(S) δ(S′) δ(S′′) L µ(L) P Hδ
S(L,P, µ)

2 ∅ {p2, p3} 1
2

1 2 {L} (1) {p2, p3} 1
1 2 {L} (1) {p1, p3} 0
0 2 {L} (1, 1) {p2, p3} 1

2

In the special case where L is empty, we recover the usual Hurwitz numbers. In particular δ is just
a positive integer number, the degree of the maps we are counting and that we denote by d. We simply
denote Hurwitz numbers by Hd

S(P, µ).
The problem of computing Hd

S(P, µ) is equivalent to counting the number of some group morphisms
from the fundamental group of a punctured surface to the symmetric group Sd. Hence, Hurwitz numbers
are theoretically computed by Frobenius’s Formula (see for example [LZ04, Appendix, Theorems A.1.9
and A.1.10]). As an example of computation, let us mention the following nice closed formula due to
Hurwitz.
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Proposition 5.3 (Hurwitz) If µ(p) = (2, 1, . . . , 1) for all p in P except for one point p0 for which we
have µ(p0) = (λ1, . . . , λk), then

Hd
S2(P, µ) =

dk−3(d+ k − 2)!

|Aut(µ(p0))|

k∏
i=1

λλii
λi!

5.1.2 Tropical morphisms between tropical curves

Here we extend Definition 2.4 to tropical morphisms between two tropical curves. Given a tropical curve
C, we denote by Vert0(C) the set of its vertices which are not 1-valent, and by Edge0(C) the set of its
edges which are not adjacent to a 1-valent vertex. In order to avoid unnecessary formal complications, we
treat points on edges of a tropical curve as 2-valent vertices of genus 0 in the next definition.

Definition 5.4 ([BBM11, Definition 2.2]) A continuous map f : C1 → C between two tropical curves
C1 and C is a tropical morphism if

• f−1(∂C) ⊂ ∂C1;

• for any edge e of C1, the set f(e) is contained in an edge of C, and the restriction f|e is a dilatation
by some integer wf,e > 0;

• for any vertex v in Vert0(C1), if we denote by e1, . . . , ek the edges of C adjacent to f(v), and by
e′i,1, . . . , e

′
i,li

the edges of C1 adjacent to v such that f(e′i,j) ⊂ ei, then one has the balancing condition

∀i, j,
li∑
l=1

wf,e′i,l =

lj∑
l=1

wf,e′j,l (5.1)

This number is called the local degree of f at v, and is denoted by df,v;

• for any vertex v in Vert0(C1), if l (resp. k) denotes the number of edges e of C (resp. of C1)
adjacent to f(v) (resp. to v) and k > 0 then one has the Riemann-Hurwitz condition

k − df,v(2gf(v) + l − 2) + 2gv − 2 ≥ 0 (5.2)

This number is denoted by rf,v.

The Riemann-Hurwitz condition in the previous definition is of course analogous to the one from Definition
4.37, and comes from the classical Riemann-Hurwitz Theorem: if S1 is a genus gv oriented surface with k
punctures, S is a genus gf(v) oriented surface with l punctures, and h : S1 → S is a ramified covering of
degree df,v, then the left hand side of inequality (5.2) is the sum of the ramification index of all points of
S1. In particular, it is non-negative.

The integer wf,e is called the weight of the edge e with respect to f . When no confusion is possible,
we will speak about the weight of an edge, without referring to the morphism f . Note that the length of
edges of C and the weights of edges of C1 determine the length of edges of C1.

Remark 5.5 This is again a simplified definition of tropical morphisms, in principle one should allow C
to have edges of weight 0. We refer to [BBM11] for more details.

Example 5.6 We depicted in Figure 5.2a (resp. 5.2b) a tropical morphism from a rational tropical curve
with one boundary component (resp. a rational closed tropical curve) to a rational curve with four ends.
Three edges have weight 2 with respect to f .
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Figure 5.2: Two tropical morphisms.

The sum of all local degrees of elements in f−1(v) is a locally constant function on C \ f(∂C1); if C ′

is a connected component of C \ f(∂C1) then this sum over a point of C ′ is called the degree of f over C ′.
In the example of the morphism from Figure 5.2a, the set C \ f(∂C1) has two connected components and
f has degree 1 and 2 over them.

Definition 5.7 Let f : C1 → C be a tropical morphism. A vertex v of C1 is called a ramification point
of f if it is either a vertex v ∈ Vert0(C1) with rf,v > 0, or a vertex v ∈ Vert∞(C1) adjacent to an edge
e with wf,e > 1. If p ∈ C is such that f−1(p) does not contain any ramification component of f , we say
that f is unramified over p.

Let ν = (λ1, . . . , λl) be an unordered l-tuple of positive integer numbers. We say that the map f has
ramification profile ν over v ∈ Vert∞(C) if f−1(v) = {v1, . . . , vl} where vi ∈ Vert∞(C1) is adjacent to an
edge of weight λi.

As usual, we identify two tropical morphisms f : C1 → C and f ′ : C ′1 :→ C if there exists a tropical
isomorphisms Φ : C1 → C ′1 such that f ′ ◦ Φ = f .

5.1.3 Tropical open Hurwitz numbers

Similarly to section 5.1.1, we start with the following data

• C a closed explicit tropical curve with Vert0(C) 6= ∅;

• R a finite collection of points in C \ Vert(C) such that any connected component of the set C \ R,

denoted by
◦
C, contains a vertex of C;

• Q be a finite collection of points in Vert∞(C);

• a number δ(C ′) ∈ Z≥0 associated to each connected component C ′ of
◦
C; to each point q ∈ R

which is in the closure of the connected components C ′ and C ′′ of
◦
C, we associate the number

γ(q) = |δ(C ′)− δ(C ′′)|;

• a partition ν(q) of δ(C ′) associated to each point q ∈ Q, where C ′ is the connected component of
◦
C

containing q;

• a partition ν(q) of γ(q) associated to each point q ∈ R.

We denote by CT the set of all tropical morphisms f : C1 → C such that

• C1 is an irreducible tropical curve with boundary;
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• f(∂C1) ⊂ R;

• f is unramified over C \ Q;

• f|f−1(C′) has degree δ(C ′) for each connected component C ′ of
◦
C;

• for each point q ∈ Q, the map f has ramification profile ν(q) over q;

• for each point q ∈ R, if ν(q) = (λ1, . . . , λk), the set f−1(q) contains exactly k boundary components
of C1, denoted by c1, . . . , ck, and ci is adjacent to an edge of C1 of weight λi.

Note that the set CT is finite. As usual in tropical geometry, a tropical morphism f : C1 → C in CT
should be counted with some multiplicity. Given v ∈ Vert0(C) a such that f(v) is adjacent to the edges
e1, . . . , ekv of C, we choose a configuration P ′ = {p′1, . . . , p′kv} of kv points on the sphere S2, and we define
µ′(p′i) as the partition of df,v defined by f at v above the edge ei (cf the balancing condition (5.1)).

Definition 5.8 ([BBM11, Definition 2.6]) The multiplicity of f : C1 → C is defined as

µ(f) =
1

|Aut(f)|
∏

e∈Edge0(C1)

wf,e
∏

v∈Vert0(C1)

(
kv∏
i=1

|Aut(µ′(p′i)|

)
H
df,v
S2 (P ′, µ′)

The tropical open Hurwitz number THδ
C(R,Q, ν) is defined as

THδ
C(R,Q, ν) =

∑
f∈CT

µ(f)

As in section 5.1.1, if R = ∅ then δ is a number denoted by d, and we denote by THd
C(Q, ν) the

corresponding tropical (closed) Hurwitz number.

Example 5.9 Let h : C1 → C be the tropical morphism depicted in figure 5.2a. It is the tropical analog
of the map considered in figure 5.1. Let q1 be the image of the boundary component of C1, and q2 and q3

be the leaves of C which are image of a leaf of C1 adjacent to an edge of weight 2. We denote by C ′ (resp.
C ′′) the connected component of C \{q1} which does not contain (resp. contains) q2 and q3, and we define
δ(C ′) = 1, δ(C ′′) = 2, ν(q1) = (1), and ν(q2) = ν(q3) = (2). To compute THδ

C(R,Q, ν), the morphism of
figure 5.2a is the only one to consider and it has multiplicity 1 so THδ

C(R,Q, ν) = 1 (see the second row
of the table in example 5.2).

Example 5.10 Let C be the genus 2 closed explicit tropical curve depicted in figure 5.3. We set Q =
Vert∞(C) and ν(q) = (2) for q ∈ Q. Then according to Figure 5.3, we have TH2

C(Q, ν) = 8.

Let us relate these tropical open Hurwitz numbers to the open Hurwitz numbers we defined in section
5.1.1. Let C be a tropical curve as in definition 5.8 with the data introduced at the beginning of this
subsection. Let S be an oriented connected compact closed surface whose genus is the genus of C. We
choose a collection L = {Lq}q∈R of disjoint smoothly embedded circles in S such that there is a natural

correspondence C ′ → S′C′ between the connected components of
◦
C and

◦
S which preserves incidence

relations and such that b1(C ′) = g(C ′S′). For each point q ∈ Q, we choose a point pq ∈ S′C′ where C ′ is

the connected component of
◦
C containing q, such that pq 6= pq′ for q 6= q′ (see figure 5.4 for an example).

Finally we define P = ∪q∈Q{pq}, δ(S′C′) = δ(C ′), µ(Lq) = ν(q), and µ(pq) = ν(q).

Theorem 5.11 ([BBM11, Theorem 2.11]) For any δ,R,Q, and ν, one has

THδ
C(R,Q, ν) = Hδ

S(L,P, µ)

Remark 5.12 We may allow points with ramification profile ν(q) = (2, 1, . . . , 1) in C \ Vert∞(C), and
recover in this way results from [CJM10].
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Figure 5.3:

5.2 Genus 0 characteristic numbers of the tropical projective
plane

Finding the so-called characteristic numbers of the complex projective plane CP 2 is a classical problem
of enumerative geometry posed by Zeuthen more than a century ago. For a given d and g one has to find
the number of degree d genus g curves that pass through a certain generic configuration of points and at
the same time are tangent to a certain generic configuration of lines. The total number of points and lines
in these two configurations is 3d− 1 + g so that the answer is a finite integer number.

In this section we translate this classical problem to the corresponding tropical enumerative problem
in the case when g = 0, relate these two problems thanks to the Correspondence Theorem 5.22, and
apply the floor decomposition technique to provide a new insight on these characteristic numbers and
their relation to Hurwitz numbers in Theorem 5.38.

Correspondence Theorem 5.22, together with its generalization [BBM14, Theorem 3.12] to immersed
constraints, are the first ones concerning plane curves satisfying tangency conditions to a given set of
curves. In the enumeration of curves satisfying simple incidence conditions, the (finitely many) tropical
curves arising as the limit of amoebas of the enumerated complex curves could be identified considering
the tropical limit of embedded complex curves. This is no longer enough to identify the tropical limit of
tangent curves, and one has to consider phase-tropical curves and morphisms. For the sake of shortness,
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Figure 5.4: A tropical curve C is depicted on the left and the corresponding surface S on the right. The
two leaves of C are elements of Q and correspond to elements of P (depicted by dots) on S while crosses
on C represent points of R and correspond to the circles of L pictured on S.

we will no enter into the details of phase-tropical geometry in this typescript, we refer instead to [BBM14,
Sections 6 and 7] (see also [Mik06, Section 6] or [BM13, Section 5]). We also provide few examples of
applications to real enumerative geometry in Section 5.2.2.3. There is no doubt that Theorems 5.22 and
[BBM14, Theorem 3.12] should lead to further results in real enumerative geometry.

Once the computation of characteristic numbers has been reduced to a tropical enumerative problem,
we apply the floor decomposition technique of tropical curves to reduce again the computations to pure
combinatoric. Since the computation of characteristic numbers of CP 2 generalizes the computation of
Gromov-Witten invariants of CP 2, the floor diagrams defined in Section 5.2.3 are a generalization of
those introduced in Section 3.2.1 in the case of the projective plane. Recall that the floor decomposition
technique allows one to solve an enumerative problem by induction on the dimension of the ambient
space, i.e. to reduce enumerative problems in CPn to enumerative problems in CPn−1. In the case under
consideration, the enumerative problem we are concerned with is to count curves which interpolate a
given configuration of points and are tangent to a given set of curves. On the level of maps, tangency
conditions are naturally interpreted as ramification conditions. In particular, the 1-dimensional analogues
of characteristic numbers are Hurwitz numbers, Hence floor diagrams express characteristic numbers
of CP 2 in terms of Hurwitz numbers. Surprisingly, not only closed Hurwitz numbers appear in this
expression, but also open ones. Computations of characteristic numbers of CP 2 performed in [Pan99],
[Vak01], and [GKP02], were done by induction on the degree of the enumerated curves. To our knowledge,
this is the first time that characteristic numbers are expressed in terms of their analogue in dimension 1,
i.e. in terms of (open) Hurwitz numbers.

We define classical characteristic numbers of CP 2, and provide some examples, in Section 5.2.1. We
settle the corresponding tropical problem and state our correspondence theorem in Section 5.2.2. A floor
diagrammatic computation of characteristic numbers is performed in Section 5.2.3.

5.2.1 Classical characteristic numbers

Let d, g and k be non negative integer numbers such that g ≤ (d−1)(d−2)
2 and k ≤ 3d + g − 1 and

d1, . . . , d3d+g−1−k be positive integer numbers. For any configurations P = {p1, . . . , pk} of k points in
CP 2, and L = {L1, . . . , L3d+g−1−k} of 3d + g − 1 − k complex non-singular algebraic curves in CP 2

such that Li has degree di, we consider the set C(d, g,P,L) of holomorphic maps f : C → CP 2 from an
irreducible non-singular complex algebraic curve of genus g, passing through all points pi ∈ P, tangent to
all curves Li ∈ L, and such that f(C) has degree d in CP 2.

If the constraints P and L are chosen generically, then the set C(d, g,P,L) is finite, and the charac-
teristic number Nd,g(k; d1, . . . , d3d+g−1−k) is defined as

Nd,g(k; d1, . . . , d3d+g−1−k) =
∑

f∈C(d,g,P,L)

1

|Aut(f)|
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where Aut(f) is the group of automorphisms of the map f : C → CP 2, i.e. isomorphisms Φ : C → C such
that f ◦ Φ = f . It depends only on d, g, k and d1, . . . , d3d+g−1−k (see for example [Vak01]). In this text,
we will use the shorter notation Nd,g(k; di11 , . . . , d

il
l ) which indicates that the integer dj is chosen ij times.

Characteristic numbers were considered by nineteenth century geometers among which S. Maillard
([Mai71]) who computed them in degree 3, H. Zeuthen ([Zeu73]) who did third and fourth degree cases,
and H. Schubert ([Sch79]). Modern mathematicians confirmed and extended their predecessor’s results
thanks in particular to intersection theory. P. Aluffi computed, for instance, all characteristic numbers for
plane cubics and some of them for plane quartics (see [Alu88], [Alu90], [Alu91] and [Alu92]), and R. Vakil
completed to confirm Zeuthen’s computation of all characteristic numbers of plane quartics in [Vak99]. R.
Pandharipande computed characteristic numbers in the rational case in [Pan99], Vakil achieved the genus
1 case in [Vak01], and T. Graber, J. Kock and Pandharipande computed genus 2 characteristic numbers
of plane curves in [GKP02]. Let us describe the characteristic numbers in some special instances.

Example 5.13 The number Nd,g(3d−1 +g) is the usual Gromov-Witten invariant of degree d and genus
g of CP 2.

Example 5.14 The numbers N2,0(5), N2,0(4; 1), and N2,0(3; 12) are easy to compute by hand, and thanks
to projective duality we have

N2,0(k; 15−k) = N2,0(5− k; 1k) = 2k for 0 ≤ k ≤ 2

Example 5.15 All characteristic numbers N3,0(k; 18−k) for rational cubic curves have been computed by
Zeuthen ([Zeu72]) and confirmed by Aluffi ([Alu91]). We sum up part of their results in the following
table.

k 8 7 6 5 4 3 2 1 0
N3,0(k; 18−k) 12 36 100 240 480 712 756 600 400

Example 5.16 The number N2,0(0; 25) has been computed independently by Chasles ([Cha64]) and De
Jonquiere. More than one century later, Ronga, Tognoli, and Vust showed in [RTV97] that it is possible
to choose 5 real conics in such a way that all conics tangent to these 5 conics are real. See also [Sot]
and [Ghy08] for a historical account and digression on this subject. See also Example 5.26 for a tropical
version of the arguments from [RTV97]. We list below the numbers N2,0(k; 25−k).

N2,0(4; 2) = 6 N2,0(3; 22) = 36 N2,0(2; 23) = 184

N2,0(1; 24) = 816 N2,0(0; 25) = 3264

More generally, the characteristic numbers Nd,g(k; 13d−1+g−k) of CP 2 determine all the numbers
Nd,g(k; d1, . . . , d3d−1+g−k). Indeed, by degenerating the non-singular curve Ld3d−1+g−k to the union of
two non-singular curves of lower degrees intersecting transversely, we obtain the following formula (see for
example [RTV97, Theorem 8])

Nd,g(k; d1, . . . , d3d−1+g−k) = 2d′3d−1+g−kd
′′
3d−1+g−kNd,g(k + 1; d1, . . . , d3d−2+g−k)

+Nd,g(k; d1, . . . , d
′
3d−1+g−k) +Nd,g(k; d1, . . . , d

′′
3d−1+g−k)

(5.3)

where d3d−1+g−k = d′3d−1+g−k + d′′3d−1+g−k.
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5.2.2 Rational characteristic numbers of the tropical projective plane

5.2.2.1 Tropical pretangencies in R2

Here we define tangency for tropical morphisms from a tropical curve. Note that A. Dickenstein and
L. Tabera also studied in [DT12] tropical tangencies but in a slightly different context, i.e. tangencies
between tropical hypersurfaces instead of tropical morphisms.

Let f : C → R2 be a tropical morphism, and L be a smooth tropical curve in R2.

Definition 5.17 The tropical morphism f is said to be pretangent to L if there exists a connected com-
ponent E of the set theoretic intersection of f(C) and L which contains either a vertex of L or the image
of a vertex of C.

The set E ⊂ R2 is called a pretangency set of f and L. A connected component of f−1(E) ⊂ C is
called a pretangency component of f with L if E contains either a vertex of C or a point p such that f(p)
is a vertex of L.

a) b) c)

w + w
1 2

w
21

w

d) e)

Figure 5.5: Pretangent morphisms

Example 5.18 In Figure 5.5 we depicted several examples of the image of a morphism pretangent to a
plane tropical curve represented by doted lines.

It is clear that not any pretangency set corresponds to some classical tangency point. For example,
the two tropical lines in Figure 5.5b are pretangent, but this pretangency set doesn’t correspond to any
tangency point between two complex algebraic lines in CP 2. However, given any approximation of f (if
one exists) and any approximation of L by algebraic curves, the accumulation set of tangency points of
these approximations must lie inside the pretangency sets of f and L (see [BBM14, Section 7]).

5.2.2.2 Correspondence

As in Section 5.2.1 let d ≥ 1, k ≥ 0, and d1, . . . , d3d−1−k > 0 be some integer numbers, and choose
P = {p1, . . . , pk} a set of k points in R2, and L = {L1, . . . , L3d−1−k} a set of 3d − 1 − k non-singular
tropical curves in R2 such that Li has degree di. We denote by TC(d,P,L) the set of tropical morphisms
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f : C → R2 of degree d, where C is an irreducible closed rational tropical curve passing through all points
pi and pretangent to all curves Li.

We suppose now that the configuration (P,L) is generic, in the sense of [BBM14, Definition 4.7]).
Recall that as usual, the set of generic configurations is a dense open subset of the set of all configurations
with a given number of points and tropical curves. Genericity of the configuration implies the following
nice behavior of the curves we are counting.

Proposition 5.19 ([BBM14, Proposition 3.3]) The set TC(d,P,L) is finite, and any of its element
f : C → R2 satisfies

• C is a 3-valent curve and generic at infinity;

• f(Vert(C))
⋂(⋃

L∈LVert(L) ∪ P
)

= ∅, i.e. no vertex of C is mapped to a vertex of a curve in L
nor to a point in P;

• given p ∈ P, if x and x′ are in f−1(p), then the (unique) path in C from x to x′ is mapped to
segment in R2 by f ;

• given L ∈ L, there exists a connected subgraph Γ ⊂ C which contains all pretangency components of
f with L, and such that f(Γ) is a segment in R2.

As usual, an element f : C → R2 of TC(d,P,L) has to be counted with some multiplicity that we define
now. Choose 3d− 1 points x1, . . . , x3d−1 on C such that f(xi) = pi if i ≤ k, and for i ≥ k+ 1, either xi is

a vertex of C mapped to Li−k, or xi is mapped to a vertex of Li−k. We define
◦
C = C \ {x1, . . . , x3d−1}.

First, we define an orientation on
◦
C. Let x be a point on an edge of

◦
C. Since C is rational, C \ {x}

has 2 connected components C1 and C2 containing respectively s1 and s2 ends, and s1 + s2 = 3d + 2.
Moreover, since (P,L) is generic, C1 (resp. C2) contains k1 ≤ s1 − 1 (resp. k2 ≤ s2 − 1) marked points.
Since k1 + k2 = 3d− 1 = s1 + s2 − 3, up to exchanging C1 and C2, we have k1 = s1 − 1 and k1 = s2 − 2.

We orient
◦
C at x from C1 to C2. Note that

◦
C and its orientation depends on the choice of the points xi,

but this won’t play a role in what follows.

Next, we define a multiplicity µ(P,L)(v) for each vertex v in Vert(C). If f(v) /∈
⋃
L∈L L, then the

genericity of (P,L) implies that there exist two edges e1, e2 ∈ Edge(C) adjacent to v and oriented toward
v. We define

µ(P,L)(v) = |det(uf,e1 , uf,e2)|.

If f(v) ∈ Li, we denote by uLi the primitive integer direction of the edge of Li containing f(v). If
f(v) ∈ Li \

⋃
L 6=Li L, then the genericity of (P,L) implies that there exists exactly one edge e ∈ Edge(C)

oriented toward v with uf,e 6= uLi , and we define

µ(P,L)(v) = |det(uf,e1 , uLi)|.

If f(v) ∈ Li ∩ Lj , we define

µ(P,L)(v) = |det(uLi , uLj )|.

Finally, we associate a weight to all constraints in P ∪ L. Given p ∈ P, we denote by E(p) the set of
edges of C which contain a point of f−1(p) and we define

wp =
∑
e∈E(p)

wf,e.
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Given L ∈ L, we denote by EL the union of all pretangency components of f with L, by µ the cardinal of
EL ∩Vert(C), and by λ the number of ends of C contained in EL. If v ∈ Vert(L), we denote by E(v) the
set of edges of C which contain a point of f−1(v), and we define

wL =

 ∑
v∈Vert(L)

∑
e∈E(v)

wf,e

+ µ− λ. (5.4)

Equivalently, we can define wL as follows

wL =
∑
e∈E(v)

wf,e if f(EL) = v ∈ Vert(L),

wL =

 ∑
v∈Vert(L)

∑
e∈E(v)

(wf,e + 1)

+ κ− 2b0(EL) otherwise

where κ is the number of edges of C \ EL adjacent to a vertex of C in EL.

Definition 5.20 The (P,L)-multiplicity of f : C → R2, denoted by µ(P,L)(f), is defined as

µ(P,L)(f) =
1

|Aut(f)|
∏

q∈P∪L
wq

∏
e∈Edge(C)

wf,e
∏

v∈Vert(C)

µ(P,L)(v).

Remark 5.21 The (P,L)-multiplicity of f has a more conceptual definition as an intersection number in
the deformation space of f , see [BBM14, Section 4]. The above definition is more practical for computation
purposes.

Theorem 5.22 (Correspondence Theorem, [BBM14, Theorem 3.8 and Proposition 5.1]) With
the hypothesis above, we have

Nd,0(k; d1, . . . , d3d−1−k) =
∑

f∈TC(d,P,L)

µ(P,L)(f).

Remark 5.23 Theorem 5.22 can actually be generalized to the case when the constraints are not neces-
sarily non-singular tropical or complex curves but any immersed curves. We refer to [BBM14, Theorem
3.12] for more details.

Example 5.24 Figure 5.6 depicts a configuration of two lines and three points together with the only
morphism in TC(2,P,L). The multiplicity of this morphism is thus µ(P,L)(f) = 1

2 × 22 × 2× 1 = 4 which
is indeed the number of conics tangent to two lines and passing through three points provided that the
configuration is generic.

5.2.2.3 Enumeration of real curves

As already mentioned, the proof of Theorem 5.22 establishes a correspondence between phase-tropical
curves and complex curves close to the tropical limit. In particular, if we choose real phases for all
constraints in (P,L), it is possible to recover all real algebraic curves passing through a configuration
of real points and tangent to a configuration of real lines when these points and lines are close to the
tropical limit. For the sake of shortness, we refer to [BBM14, Sections 6 and 7] for basic definitions in
phase-tropical geometry.
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2

Figure 5.6: A conic tangent to two lines and passing through three points

Example 5.25 Let us revisit Example 5.24 from a real point of view. For example, if all the three
points in Example 5.24 have phase (1, 1), then the tropical curve in Figure 5.6 ensures that there exists a
configuration of three points and two lines in RP 2 such that all four conics passing through these points
and tangent to these lines are real. On the opposite, if the middle point has phase (−1, 1) and the two
other points have phase (1, 1), then there exists a corresponding configuration of three points and two lines
in RP 2 such that none of the four conics passing through these points and tangent to these lines are real.

Example 5.26 One can interpret in tropical terms the method used in [RTV97] to construct a config-
uration of 5 real conics such that all 3264 conics tangent to these 5 conics are real. The main step in
this construction is to find 5 real lines L1, . . . , L5 in RP 2 and 5 points p1 ∈ L1, . . . , p5 ∈ L5 such that
for any set I ⊂ {1, . . . , 5}, all the conics passing through the points pi, i ∈ I, and tangent to the lines
Lj, j ∈ {1, . . . , 5} \ I are real. As in [RTV97], let us start with the configuration depicted in Figure 5.7a,
whose tropical analog is depicted in Figure 5.7b (without phase) and 5.7c (equipped with the appropriate
real phases). Next, we perturb the double lines L2

i as depicted in Figure 5.7d (without phase, the cycle de-
fined by the image is a twice a line) and 5.7e (equipped with the appropriate real phases). Then there exist
5 families of real conics converging to our 5 phase conics and producing 3264 real conics as in [RTV97].

It would be interesting to explore the possible numbers of real conics tangent to 5 real conics, in
connection to [Wel06] and [Ber08]. In particular, does there exist a configuration of 5 real conics, any
one of which lying outside the others, such that exactly 32 real conics are tangent to them?

Note that once the lines and points Li and pi are chosen as above, arguments used in Example 5.26
also prove Proposition 3.62.

5.2.3 Floor diagrams

Now we reformulate the computation of characteristic numbers in a purely combinatorial way using floor
diagrams. The strategy is the same as in Sections 3.2.1 and 3.2.3: we stretch our configuration of con-
straints in the vertical direction, i.e. we only consider configurations (P,L) for which the difference of
the y-coordinates of any two elements of the set P ∪L∈L Vert(L) is very big compared to the difference of
their x-coordinates. For a sufficiently stretched configuration (P,L), tropical morphisms f : C → R2 in
TC(d,P,L) will have a very simple decomposition into floors linked together by shafts, which are gener-
alized elevators as defined in Definition 3.2.1. Marked floor diagrams and their multiplicities will encode
the combinatoric of these decompositions together with the distribution of f−1(P) and the tangency com-
ponents of f with elements of L. In the case where no tangency condition is imposed, these new floor
diagrams get simplified to those introduced Section 3.2.1. As mentioned in the beginning of Section 5.2,
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a) b)

c) d)

e)

Figure 5.7: 3264 real conics tangent to 5 real conics

these floor diagrams compute characteristic numbers of the plane in terms of open Hurwitz numbers,
which appear in two distinct ways in the count of Nd,0(k; d1, . . . , d3d−1−k).
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Definition 5.27 An elevator of a tropical morphism f : C → R2 is an edge e of C with uf,e = ±(0, 1).
A shaft of f is a connected component of the topological closure of the union of all elevators of f . The set
of shafts of f : C → R2 is denoted by Sh(f).

A floor of a tropical morphism f : C → R2 is a connected component of the topological closure of
C \ Sh(f). The degree of a floor F of f , denoted by deg(F), is the tropical intersection number of f(F)
with a generic vertical line of R2.

Theorem 5.38 involves some special open Hurwitz numbers that we describe now. Let s ≥ 0 be an
integer number, and δ, n : {0, . . . , s} → Z≥0 be two functions. Choose a collection of s embedded circles
c1, . . . , cs in the sphere S2 such that c1 (resp. cs) bounds a disk D0 (resp. Ds), and ci and ci+1 bound
an annulus Di for 1 ≤ i ≤ s − 1. Choose also a collection Q of points in S2 \ ∪si=1ci, such that each
Di contains exactly n(i) points of Q. Let us consider the set H(δ, n) of all equivalence class of ramified
coverings f : Σ→ S2 where

• Σ is a connected compact oriented surface of genus 0 with s boundary components;

• f(∂Σ) ⊂ ∪si=1ci;

• f is unramified over S2 \ Q;

• f|f−1(Di) has degree δ(i) for each i;

• each point in Q is a simple critical value of f ;

• for each circle ci, the set f−1(ci) contains exactly one connected component c of ∂Σ, and f|c : c→ ci
is an unramified covering of degree |δ(i)− δ(i− 1)|.

Definition 5.28 The number H(δ, n) is defined as

H(δ, n) =
∑

f∈H(δ,n)

1

|Aut(f)|
.

Note that we can naturally extend the definition of the numbers H(δ, n) to the case where δ : {0, . . . , s} →
Z is any function by setting

H(δ, n) = 0 if Im(δ) * Z≥0.

In the special case where s = 0, we recover usual Hurwitz numbers. In particular δ is just a positive
integer number, the degree of the maps we are counting and that we just denote by d. We simply denote
this Hurwitz number by H(d).

5.2.3.1 A simple example

Let us start by illustrating our approach on a simple case. Let us consider L the set composed of the
five tropical lines depicted in Figure 5.8. The set TC(2, ∅,L) is then reduced to the tropical morphism
f : C → R2 depicted in Figure 5.8b, which is of multiplicity 1. This morphism has one floor of degree 2,
and one shaft made of three elevators. Let us represent the morphism f by the graph depicted in Figure
5.8c, where the black vertex represents the shaft of f , the white vertex represents the floor of f , and the
edge represents the weight 2 elevator of f which join the shaft and the floor of f . By remembering on this
graph how are distributed the tangency components of f with the lines Li, we obtain the labeled graph
depicted in Figure 5.8d.

Let us define the two projections πx and πy as follows

πx : R2 → R and πy : R2 → R
(x, y) 7→ x (x, y) 7→ y

.

Our main observation is the following:
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L 1

L

L

L 2

3

4

5L

2

2

2 2

3,4,5

1,2

a) b) c) d)

Figure 5.8: A tropical conic tangent to five lines, and its associated marked floor diagram

• the map πx ◦ f restricted to the floor of f is a tropical ramified covering of R of degree 2; its critical
values correspond to the vertical edge of the lines L4 and L5 (see Figure 5.9);

• the map πy ◦ f restricted to the shaft of f is a tropical morphism with source a tropical curve with
one boundary component; its critical value correspond approximately to the horizontal edge of L1;
the image of its boundary component corresponds approximately to the horizontal edge of L3.

Vice versa, the morphism f : C → R2 can be reconstructed out of the labeled diagram of Figure 5.8d
in the following way: we first find the tropical solutions of two tropical open Hurwitz problems, one for
the floor of f and one for its shaft; next we glue them according to the elevator joining this floor and this
shaft, and the lines L2 and L3.

2

2 2

2

Figure 5.9: From characteristic numbers to open Hurwitz numbers
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The floor of f leads to the Hurwitz number H(2) = 1
2 ; we have two possibilities to attach the weight

2 elevator; making the floor tangent to L3 gives a factor 1; the Hurwitz number we have to compute to
reconstruct the shaft of f is H(δ, n) = 1

2 where δ(0) = 2, δ(1) = n(1) = 0, and n(0) = 1 making the shaft
tangent to L2 gives us a factor 1; gluing the floor and the shaft along the weight 2 elevator gives an extra
factor 2. Hence, the total multiplicity of f is

1

2
× 2× 1× 1

2
× 1× 2 = 1

as expected.

5.2.3.2 The general case

Let us define now floor diagrams to arbitrary degree and set of constrains. For simplicity, we only explain
in detail how to turn the problem of computing the numbers Nd,0(k; 13d−1−k) into the enumeration of
marked floor diagrams. The general computation of the numbers Nd,0(k; d1, . . . , d3d−1−k) in terms of floor
diagrams require no more substantial efforts, but makes the exposition heavier. Hence we restrict ourselves
to the case of tangency with lines, which by Equation (5.3) is enough to recover all genus 0 characteristic
numbers of CP 2.

The floor diagrams we deal with in this paper underlie bipartite trees, whose vertices are divided
between white and black vertices. In this section we use the following definition of a floor diagram, which
is slightly different from Definition 3.1.

Definition 5.29 A floor diagram (of genus 0) is an oriented bipartite tree D equipped with a weight
function w : Edge(D) → Z>0 such that white vertices have positive divergence, and black vertices have
non-positive divergence.

The sum of the divergence of all white vertices is called the degree of D. We denote by Vert◦(D) the
set of white vertices of D, and by Vert•(D) the set of its black vertices. As explained in Section 5.2.3.1, a
white vertex represents a floor of a tropical morphism, whereas a black vertex represents one of its shafts.

Example 5.30 All floor diagrams of degree 2 are depicted in Figure 5.10. We precise the weight of an
edge of D only if this latter is not 1.

2 2

Figure 5.10: Floor diagrams of degree 2

Given a vertex v of D, we denote by Vert(v) the set of vertices of D adjacent to v.

Definition 5.31 Let Lcomb tPcomb be a partition of the set {1, . . . , 3d− 1}. A Lcomb-marking of a floor
diagram D of degree d is a surjective map m : {1, . . . , 3d− 1} → Vert(D) such that
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• for any v ∈ Vert(D), the set m−1(v) contains at most one point in Pcomb; moreover, if v ∈ Vert◦(D)
and m−1(v) ∩ Pcomb = {i}, then i = min(m−1(v));

• for any v ∈ Vert◦(D), |m−1(v)| = 2div(v)− 1;

• for any v ∈ Vert•(D), |m−1(v)| = val(v) − div(v) − 1; moreover there exists at most one element
i in m−1(v) such that i > maxv′∈Vert(v) min(m−1(v′)), and if such an element exists then we have

m−1(v) ∩ Pcomb = ∅.

Two Lcomb-markings m : {1, . . . , 3d − 1} → Vert(D) and m′ : {1, . . . , 3d − 1} → Vert(D′) are isomorphic
if there exists an isomorphism of bipartite graphs φ : D → D′ such that m = m′ ◦ φ. In this text,
Lcomb-marked floor diagrams are considered up to isomorphism.

The set {1, . . . , 3d − 1} represents the configuration of constraints in the increasing height order (see
Section 5.2.3.1), the set Lcomb represents the lines in the configuration, and the set Pcomb represents
the points. Note that unlike in Section 3.2.1, we do not consider the partial order on D defined by its
orientation. In particular, it makes no sense here to require the marking m to be an increasing map.

In order to define the multiplicity of an Lcomb-marked floor diagram, we first define the multiplicity of
a vertex of D.

Definition 5.32 The multiplicity of a vertex v in Vert◦(D) is defined as

• if min(m−1(v)) ∈ Pcomb, then

µLcomb(v) = div(v)val(v)+1H(div(v))

• otherwise
µLcomb(v) = (div(v)− 2 + val(v))div(v)val(v)H(div(v)).

Example 5.33 We give in Figure 5.11 some examples of multiplicities of white vertices of a marked floor
diagram. The corresponding Hurwitz numbers are given in Proposition 5.3. We write the elements of
m−1(v) close to the vertex v.

a<...

3

a<... a a<...

d

d>1

a ∈ Pcomb, µ = 1
a ∈ Lcomb, µ = 2

a ∈ Pcomb, µ = 324
a ∈ Lcomb, µ = 432

a ∈ Pcomb, µ = 1
a ∈ Lcomb, µ = 0

a ∈ Pcomb, µ = dd−1(2d−2)!
d!

a ∈ Lcomb, µ = dd−3(2d−2)!
(d−2)!

Figure 5.11: Example of multiplicities of white vertices of D

The definition of the multiplicity of a black vertex v of D requires a preliminary construction. The
order on {1, . . . , 3d−1} induces an order on Vert(v) via the map v′ 7→ min(m−1(v′)). Note that this order
doesn’t have to be compatible with the orientation of D. Let us denote by v′1 < . . . < v′s the elements of
Vert(v) according to this order. We denote by ei the edge of D joining the vertices v and v′i, and define
εi = 1 if ei is oriented toward v, and εi = −1 otherwise. Given j ∈ m−1(v) we define the integer ij by

ij = 0 if j < min(m−1(v′1));
ij = i if min(m−1(v′i)) < j < min(m−1(v′i+1));
ij = s if j > min(m−1(v′s)).

We define two functions δ, ñ : {0, . . . , s} → Z by
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• δ(0) = −div(v),

δ(i+ 1) = δ(i) + εi+1w(ei+1);

• ñ(i) = |{j ∈ m−1(v) | ij = i}|.

Given i0 ∈ {0, . . . , s}, we define the function ni0 : {0, . . . , s} → Z≥0 by ni0(i0) = ñ(i0)−1 and ni0(i) = ñ(i)

if i 6= i0. Finally, we define Ñ(i) =
∑i
l=0 ñ(l) and Ñ(−1) = 0.

Definition 5.34 The multiplicity of a vertex v in Vert•(D) is defined by the following rules

• if m−1(v) ∩ Pcomb = {j}, then
µLcomb(v) = δ(ij)H(δ, nij )

• if m−1(v)∩Pcomb = ∅ and m−1(v) contains an element j such that j > maxv′∈Vert(v) min(m−1(v′)),
then

µLcomb(v) = (2val(v)− 2)H(δ, ns)

• otherwise,

µLcomb(v) =
1

2

s∑
i=0

(
ñ(i)

(
2δ(i) + 2i+ Ñ(i) + Ñ(i− 1)− 1 + 2div(v)

)
H(δ, ni)

)
.

Example 5.35 We give in Figure 5.12 some examples of multiplicities of black vertices of a marked floor
diagram.

b<...

a

d<...

3

a<b<c

a > b, µ = 0
a < b, a ∈ Pcomb, µ = 1
a < b, a ∈ Lcomb, µ = 0

c > d, µ = 0
c < d, {a, b, c} ∩ Pcomb 6= ∅, µ = 3
c < d, {a, b, c} ⊂ Lcomb, µ = 3

a<...

d<...

2

b<c g h

a<b<c<d<e

f

c<f<d<g<h

b < a, b ∈ Pcomb, µ = 1
b < a, b ∈ Lcomb, µ = 0
a < b < c < d, {b, c} ∩ Pcomb 6= ∅, µ = 2
a < b < c < d, {b, c} ⊂ Lcomb, µ = 5
a < b < d < c, {b, c} ⊂ Lcomb, µ = 2

e > h, e ∈ Lcomb, µ = 32
e < g, {d, e} ∩ Pcomb 6= ∅, µ = 16
e < g, c ∈ Pcomb, µ = 6
e < g, {a, b, c, d, e} ∈ Lcomb, µ = 62

Figure 5.12: Example of multiplicities of black vertices of D
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Definition 5.36 The multiplicity of an Lcomb-marked floor diagram is defined as

µLcomb(D,m) =
∏

e∈Edge(D)

w(e)
∏

v∈Vert(D)

µLcomb(v).

Note that µLcomb(D,m) can be equal to 0.

Example 5.37 We give in Figure 5.13 a few examples of multiplicities of Lcomb-marked floor diagrams.

1 2

3

4

5

1 2

3

5

4

2

6,7,8

1,5

2

2,3

4
2

12,3

4,5,6,7,8

1,2,3,4,6

5 7 8

µ∅ = 1 µ{5} = 2 µ{2,...,8} = 2 µ{2,...,8} = 108 µ{1,2,3,4,6} = 80

Figure 5.13: Example of multiplicities of Lcomb-marked floor diagrams

Next theorem reduces the computation of characteristic numbers in genus 0 of CP 2 to the combinatorial
enumeration of marked floor diagrams.

Theorem 5.38 ([BBM14, Theorem 8.11]) For any d ≥ 1, k ≥ 0, and Lcomb ⊂ {1, . . . , 3d − 1} of
cardinal 3d− 1− k, we have

Nd,0(k; 13d−1−k) =
∑

µLcomb(D,m)

where the sum ranges over all Lcomb-marked floor diagrams of degree d.

Note that in the case k = 3d − 1, Theorem 5.38 agrees with Theorem 3.11. Indeed, a ∅-marked floor
diagram has non-null multiplicity if and only if the marking is increasing with respect to the partial order
on D defined by its orientation; in this case, the different definitions of multiplicity of a marked floor
diagram coincide.

Example 5.39 We compute the numbers N2,0(k; 15−k), with Lcomb = {k + 1, . . . , 5}. In each case, there
is exactly one marked floor diagram of positive multiplicity, depicted in Figure 5.14.

Example 5.40 Figure 5.15 represents all marked floor diagrams of degree 3 with positive multiplicity
when Lcomb = {2, . . . , 8}. Hence there are exactly 600 rational cubics passing through 1 point and tangent
to 7 lines.

We refer to [BBM14, Section 8] for more examples of computations using marked floor diagrams.

96



97

1 2

3

4

5

1 2

3

5

4

3,4,5

21

2

3,4,5

1,2

µ∅ 1 0 0 0
µ{5} 0 2 0 0
µ{4,5} 0 0 4 0
µ{3,4,5} 0 0 4 0
µ{2,3,4,5} 0 0 0 2
µ{1,2,3,4,5} 0 0 0 1

Figure 5.14: Computation of N2,0(k; 15−k) with Lcomb = {k + 1, . . . , 5}

5.2.4 Further comments

All statements, and proofs given in [BBM14] should generalize with no difficulty to the case of rational
curves in CPn intersecting cycles and tangent to non-singular hypersurfaces. The resulting floor diagrams
would then be a generalization of those defined in Section 3.2.3. The enumeration of plane curves with
higher order tangency conditions to other curves should also be doable in principle using our methods.
This would first necessitate to identify tropicalizations of higher order tangencies between curves, gener-
alizing the simple tangency case treated in Section 5.2.2.1. However this identification might be intricate,
and will certainly lead to much more different cases than for simple tangencies (third order tangencies to
a line are dealt with in [BLdM12]). In turn, the use of tropical techniques in the computation of higher
genus characteristic numbers requires some substantial additional work. The main difficulty is that super-
abundancy appears for positive genus: some combinatorial types appearing as solution of the enumerative
problem might be of actual dimension strictly bigger than the expected one (see Remark 2.5). Hence
before enumerating tropical curves, in addition to the balancing condition one has first to understand
extra necessary conditions for a tropical morphism to be the tropical limit of a family of algebraic maps.
Using techniques based on a combination of tropical modifications and local obstructions (see Section
6.2), we succeeded with Bertrand and Mikhalkin to compute genus 1 characteristic numbers of CP 2. Also
for a small number of tangency constraints, it is possible to find a configuration of constraints for which
no superabundant curve shows up. In this case Theorem 5.22 applies, the proof only requiring minor
adjustments.

Also, as mentioned above, it would be interesting to explore applications of Theorem 5.22 to enumer-
ation of real curves.
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2

1

2,3

4

a

b,c,d

1

2

2

b,c,d

a

2,3

4

2

2

b,c,d

a

4

1,2,3

3

a = 5, 6, 7, or 8 and µ = 8 a = 5 and µ = 12
a = 6, 7, or 8 and µ = 8

a = 5 and µ = 54
a = 6, 7, or 8 and µ = 36

2

b,c,d

4,a

2

1,2

3

2

6,7,8

1,5

2

2,3

4 4,5,6,7,8

3

1,2,3

2

12,3

4,5,6,7,8

a = 5 and µ = 20
a = 6, 7, or 8 and µ = 8

µ = 2 µ = 216 µ = 108

Figure 5.15: Computation of N3,0(1; 17) = 600 with Lcomb = {2, . . . , 8}
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Chapter 6

A brief presentation of other related
works

In this chapter we give a very brief overview of some other of our works, which are less directly related
to the central theme of this memoir. However they were partly motivated by the development of tropical
geometry with a view towards applications to enumerative geometry, which justify their presence here.

6.1 Real inflection points of real algebraic curves

The fact that a non-singular real algebraic curve in RP 2 of degree d has at most d(d − 2) real inflection
points was proved by Klein in 1876, see [Kle76]; see also [Ron98, Sch04, Vir88]. A non-singular real
plane algebraic curve having this maximal number of real inflection points is called maximally inflected.
The existence of maximally inflected curves of any degree was also proved by Klein. However, many
questions about real inflection points of (maximally inflected) real algebraic curves remain widely open.
For example, which rigid-isotopy classes of real algebraic curves contain a maximally inflected curve? How
real inflection points can be distributed among the connected component of a maximally inflected curve?
These possible distributions of real inflection points turn out to be subject to non-trivial obstructions that
mainly remain mysterious (see for example [KS03, BLdM12, ABdLdM14]).

We studied these questions in the two papers [BLdM12, ABdLdM14]. The former is a joint work
with López de Medrano, and the latter with Arroyo and López de Medrano. Using patchworking of real
algebraic curves, we provided in [BLdM12] a systematic method to construct maximally inflected real
algebraic curves with a controlled position of their real inflection points.

Theorem 6.1 ([BLdM12, Theorem 5.7]) Let C be a non-singular tropical curve in R2 such that if v
is a vertex of C dual to ∆1, then its 3 adjacent edges have 3 different length. Then any real algebraic curve
constructed by a patchworking of C is maximally inflected. Moreover, the position of its real inflection
points can be read out of this patchworking.

For an account of Viro’s patchworking, we refer for example to the tropical presentation made in [Vir01,
Mik04, Bru13].
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Thanks to Theorem 6.1 combined with other tools from real algebraic geometry (rigid isotopy classifi-
cation results, braid theoretical methods), we obtain some classifications results. For example, we obtained
the complete classification of possible distributions of real inflection points among the components of a
hyperbolic curve of degree 6.

Theorem 6.2 ([ABdLdM14, Theorem 1.2]) Let C be a non-singular maximally inflected real alge-
braic curve curve of degree 6 in RP 2 whose real part consists of three nested ovals. Then, the outer oval of
C contains at least 6 real inflection points. Moreover, for any 0 ≤ k ≤ 9, there exists such a real algebraic
curve with exactly 6 + 2k real inflection points on the outer oval.

As an example of application of Theorem 6.1, the patchworking of a maximally inflected hyperbolic
curve of degree 6 with only 6 real inflection points on the outer oval is depicted in Figure 6.1 (we refer for
example to [Bru13, Section 3] for the ribbon interpretation of Patchworking).

��
��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��
��

�
�
�

�
�
�

��
��
��
��
�
�
�

�
�
�

��
��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��
��

�
�
�

�
�
�

a) b)

Figure 6.1: Patchworking of a maximally inflected hyperbolic curve of degree 6 with only 6 real inflection
points on the outer oval (each tropical inflection point is colored according to the arc it comes from)

As mentioned above, obstructions concerning possible distributions of real inflection points on non-
singular real algebraic curves mainly remain mysterious, and the proof of non-trivial obstructions known
to us are rather ad hoc. It would be interesting to find more general proofs. Note also that real inflection
points are related to real Weierstrass points on real algebraic curves, and that the study of these latter is
also widely open.

6.2 On the approximation of tropical curves in tropical surfaces

One of the challenging problems in tropical geometry is to understand which tropical varieties are approx-
imable, i.e. arise as the tropicalization of classical algebraic varieties. Not all tropical varieties are approx-
imable, the first example was given by Mikhalkin who constructed in [Mik05] a spatial elliptic tropical
cubic C which is not tropically planar: by the Riemann-Roch Theorem any classical spatial elliptic cubic
is planar, therefore the tropical curve C cannot be approximable. It follows from the works of Kapranov,
Viro, Mikhalkin, and Rullg̊ard (see [Kap00, Vir01, Mik04, Rul01]) that any tropical hypersurface in RN is
approximable. In addition, many nice partial results about approximation of tropical curves in RN have
been proved by different authors (e.g. [Mik05, Mik06, Spe07, NS06, Mik, Nis09, Tyo12, Kat12a, BBM14]).
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Tropical varieties in RN are related to classical subvarieties of toric varieties. When considering non-
toric varieties, or when working in tropical models of the torus different from RN (for example as in
Section 4.3), one is naturally led to the approximation problem for pairs, that is to say the simultaneous
approximation of a tropical variety together with one if its subvarieties. Non-approximable pairs of tropical
objects show up even in very simple situations. Some well known pathological examples of such pairs were
given by Vigeland, who constructed in [Vig09] examples of generic non-singular tropical surfaces in R3 of
any degree d ≥ 3 containing infinitely many tropical lines. Moreover, the surfaces constructed by Vigeland
form an open subset of the space of all tropical surfaces of the given degree d, which means that these
families of lines survive when perturbing the coefficients of a tropical equation of the surface. Vigeland’s
construction dramatically contrasts with Segre’s Theorem [Seg43] asserting that any non-singular complex
surface of degree d ≥ 3 in CP 3 can contain only finitely many lines.

In a joint work with Shaw [BS14], we provided combinatorial local obstructions in the case of tropical
curves in non-singular tropical surfaces. More precisely, we studied the following problem.

Question 6.3 Let P ⊂ (C∗)N be a plane, and C ⊂ Trop(P) ⊂ RN be a fan tropical curve. Does there
exist a complex algebraic curve C ⊂ P ⊂ (C∗)N such that Trop(C) = C?

We refer to [BS14, Section 2] for precise definitions of fan tropical curves and of tropicalizations. As
a first rough approximation, given an algebraic subvariety X of (C∗)N , one can think of Trop(X) as
limt→∞ Logt(X). Partial answers to Question 6.3 and its generalizations were previously obtained by
the author and Mikhalkin in an unpublished work, by Bogart and Katz [BK12], and subsequently by
Gathman, Schmitz and Winstel [GSW13].

The strategy used in [BS14] is to use the relation between tropical and complex intersection theories in
order to translate classical results (e.g. adjunction formula, intersection with Hessian) into combinatorial
formulas involving only tropical data ([BS14, Theorem 3.8]). In the case of stable intersections, such a
relation has been previously obtained in [Rab12, BLdM12, OR13, Kat12b]. As an example of general
obstructions proved in [BS14], we sate a weak but easy-to-state version of [BS14, Theorem 4.1], which is a
consequence of complex adjunction formula. A plane P in (C∗)N is called uniform if its compactification
P ⊂ CPN as a projective linear subspace does not meet any N − k-coordinate linear space with k ≥ 3.

Theorem 6.4 ([BS14, Theorem 1.3]) Let P ⊂ (C∗)N be a uniform plane, and C ⊂ Trop(P) ⊂ RN be
a fan tropical curve of degree d. If there exists an irreducible and reduced complex algebraic curve C ′ ⊂ P
such that Trop(C ′) = C, then

C2 + (N − 2)d−
∑

e⊂Edge(C)

we + 2 ≥ 2g(C ′).

In particular, if the left hand side is negative then C is not approximable in P by an irreducible and reduced
complex algebraic curve.

Note that even in the case of rational tropical curves in surfaces, there exist non-local obstructions to
the approximation in pairs, see [BS14, Remark 1.9]. This contrast with the fact that any tropical rational
curve in Rn is approximable (see for example [Spe07]).

The last two sections of [BS14] are devoted to applications of the general obstructions proved in [BS14,
Theorems 4.1 and 5.3].

We first classify in [BS14, Theorem 6.9] all 2 or 3-valent approximable fan tropical curves in a plane
P. Next theorem provides two simple instances of this classification.

Theorem 6.5 ([BS14, Theorem 1.3]) Let P ⊂ (C∗)N be a non-degenerate plane, and let C ⊂ Trop(P)
be a reduced 2 or 3-valent fan tropical curve.
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1. If N = 3, then C is approximable in P if and only if C2 = 0 or C2 = −1;

2. If N ≥ 6 and C is of degree at least 2, then C is not approximable in P.

Secondly, we apply our methods to the study of tropical lines in tropical surfaces. Next theorem shows
that when we restrict our attention to those which are approximable in the tropical surface, the situation
turns out to be analogous to the case of complex algebraic surfaces. This solves the problem raised in
[Vig09] of generic tropical surfaces of degree d ≥ 4 containing tropical lines, and tropical surfaces of degree
d = 3 containing infinitely many tropical lines.

Theorem 6.6 ([BS14, Theorem 1.8]) Let S be a generic non-singular tropical surface in TP 3 of degree
d. If d = 3, then there exist finitely many tropical lines L ⊂ S such that the pair (S,L) is approximable.

If d ≥ 4, then there exist no tropical lines L ⊂ S such that the pair (S,L) is approximable.

We end this section with a few comments. First, it is interesting to note that all fan tropical curves
C ⊂ R3 known to us to be approximable by an irreducible and reduced complex algebraic curve in a plane
P ⊂ (C∗)3 satisfy C2 ≥ −1 in Trop(P). This leads us to the following open question: does there exist a
fan tropical curve C ⊂ R3 which is approximable by an irreducible and reduced complex algebraic curve
in a plane P ⊂ (C∗)3 and satisfies C2 ≤ −2 in Trop(P)?

Next, one possible way of getting non-local obstructions to the approximation problem is to combine
local obstructions with tropical modifications. This strategy is the subject of a joint work in progress with
G. Mikhalkin that has ramifications to many directions.

6.3 Approximation of tropical morphisms between tropical curves

In a joint work with Amini, Baker, and Rabinoff [ABBR13a, ABBR13b], we carefully study which mor-
phisms between tropical curves, in the sense of Definition 5.4, arise as tropicalizations of morphisms of
algebraic curves. In these two papers, tropicalization is defined via Berkovich’s theory of analytic spaces
(see also [Pay09, BRP11, CLD12]). This setting is related but somewhat different from the frameworks
proposed by Kontsevich and Soibelman [KS01] on one hand, and by Mikhalkin [Mik06] on the other
hand, where the link between tropical geometry and complex algebraic geometry is provided by real
one-parameter families of complex varieties.

In [ABBR13a] we prove many approximability results concerning several variations on the above ques-
tion, and extend earlier works by Säıdi [Säı97] and Wewers [Wew99]. In particular, one of our main results
is that in characteristic 0, the only obstructions are local for tropical morphisms in the sense of Definition
5.4. We refer to [ABBR13a] for a more rigorous statement.

Theorem 6.7 ([ABBR13a, Theorem B, Corollary D]) A tropical morphism between two tropical
curves is globally approximable in characteristic 0 if and only it is locally approximable everywhere.

In Mikhalkin’s framework of phase-tropical geometry (see for example [Mik06, Section 6], [BMa, Section
6]), Theorem 6.7 is a consequence of Riemann’s Existence Theorem. Note that the local approximation
problem of a tropical morphism between two tropical curves (in characteristic 0) is equivalent to the study
of the vanishing of certain Hurwitz numbers, which is known to be a subtle problem.

We prove a number of additional results which supplement and provide applications of Theorem 6.7
and its variations: approximation of a tropical curve equipped with a tame action of a finite group H,
classify tropical curves approximable by hyperelliptic curves, how gonality and rank of a divisor change
under tropicalization, ... In particular, we prove that neither the tropical gonality nor the tropical rank
of a divisor are sharp.
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Theorem 6.8 ([ABBR13b, Theorem 5.4]) There exists a choice of edges length such that the explicit
tropical curve depicted in Figure 6.2 has gonality 4. However, for any choice of edges length, any approx-
imation of this tropical curve has gonality at least 5.

Figure 6.2: An explicit tropical curve of gonality 4 with no approximation of gonality 4

Proposition 6.9 ([ABBR13b, Proposition 5.14]) There exists an effective divisor D on a tropical
curve C such that D has tropical rank equal to 1, but any effective lifting of D has rank 0.
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[ABLdM11] A. Arroyo, E. Brugallé, and L. López de Medrano. Recursive formula for Welschinger
invariants. Int Math Res Notices, 5:1107–1134, 2011.

[AC11] D. Abramovich and C. Chen. Logarithmic stable maps to Deligne-Faltings pairs II.
arXiv:1102.4531v2, 2011.

[Alu88] P. Aluffi. The characteristic numbers of smooth plane cubics. In Algebraic geometry (Sun-
dance, UT, 1986), volume 1311 of Lecture Notes in Math., pages 1–8. Springer, Berlin,
1988.

[Alu90] P. Aluffi. The enumerative geometry of plane cubics. I. Smooth cubics. Trans. Amer. Math.
Soc., 317(2):501–539, 1990.

[Alu91] P. Aluffi. The enumerative geometry of plane cubics. II. Nodal and cuspidal cubics. Math.
Ann., 289(4):543–572, 1991.

[Alu92] Paolo Aluffi. Two characteristic numbers for smooth plane curves of any degree. Trans.
Amer. Math. Soc., 329(1):73–96, 1992.

[AR10] L. Allermann and J. Rau. First steps in tropical intersection theory. Mathematische
Zeitschrift, 264:633–670, 2010.

[Ard] F. Ardila. Double Hurwitz numbers and DPV remarkable spaces. In preparation.



106 References
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[BG14] F. Block and L. Göttsche. Refined curve counting with tropical geometry. arXiv:1407.2901,
2014.

[BK12] T. Bogart and E. Katz. Obstructions to lifting tropical curves in surfaces in 3-space. SIAM
J. Discrete Math., 26(3):1050–1067, 2012.
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[BS14] E. Brugallé and K. Shaw. Obstructions to approximating tropical curves in surfaces via
intersection theory. To appear in Canadian Journal of Mathematics, 2014.

[CH98] L. Caporaso and J. Harris. Counting plane curves of any genus. Invent. Math., 131(2):345–
392, 1998.

[Cha64] M. Chasles. Construction des coniques qui satisfont à cinq conditions. C. R. Acad. Sci.
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[GP98] L. Göttsche and R. Pandharipande. The quantum cohomology of blow-ups of P2 and
enumerative geometry. J. Differential Geom., 48(1):61–90, 1998.

[GS12] L. Göttsche and V. Shende. Refined curve counting on complex surfaces. arXiv:1208.1973,
2012.

[GS13] M. Gross and B. Siebert. Logarithmic Gromov-Witten invariants. J. Amer. Math. Soc.,
26(2):451–510, 2013.

[GS14] M. Gross and B. Siebert. Local mirror symmetry in the tropics. arXiv:1404.3585, 2014.

[GSW13] A. Gathmann, K. Schmitz, and A. Winstel. The realizability of curves in a tropical plane.
arXiv:1307.5686, 2013.

[GZ13] P. Georgieva and A. Zinger. Enumeration of real curves in CP 2n−1 and a WDVV relation
for real Gromov-Witten invariants. arXiv:1309.4079, 2013.

[HS12] A. Horev and J. Solomon. The open Gromov-Witten-Welschinger theory of blowups of the
projective plane. arXiv:1210.4034, 2012.

[IKS03] I. Itenberg, V. Kharlamov, and E. Shustin. Welschinger invariant and enumeration of real
rational curves. Int. Math. Research Notices, 49:2639–2653, 2003.

[IKS04] I. Itenberg, V. Kharlamov, and E. Shustin. Logarithmic equivalence of Welschinger and
Gromov-Witten invariants. Uspehi Mat. Nauk, 59(6):85–110, 2004. (in Russian). English
version: Russian Math. Surveys 59 (2004), no. 6, 1093-1116.

[IKS09] I. Itenberg, V. Kharlamov, and E. Shustin. A Caporaso-Harris type formula for Welschinger
invariants of real toric Del Pezzo surfaces. Comment. Math. Helv., 84:87–126, 2009.

[IKS13a] I. Itenberg, V. Kharlamov, and E. Shustin. Welschinger invariants of real Del Pezzo surfaces
of degree ≥ 2. arXiv:1312.2921, 2013.

[IKS13b] I. Itenberg, V. Kharlamov, and E. Shustin. Welschinger invariants of real del Pezzo surfaces
of degree ≥ 3. Math. Ann., 355(3):849–878, 2013.

[IKS13c] I. Itenberg, V. Kharlamov, and E. Shustin. Welschinger invariants of small non-toric Del
Pezzo surfaces. J. Eur. Math. Soc. (JEMS), 15(2):539–594, 2013.

108



References 109
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